Copyright (c) 2023 Hex-Rays SA
Debugging Dalvik Programs

Table of Contents

. Preface
. Installing Android Studio
. Environment Variables
. Android Device
. Installing the App
. Loading Application into IDA
. Dalvik Debugger Options
7.1. Connection Settings
7.2. Start Application
7.3. Detect Local Variable Types
7.4. Other Options
8. Path to Sources
9. Setting Breakpoints
10. Starting the Debugger
10.1. Launching the App
10.2. Attaching to a Running App
11. Particularities of Dalvik Debugger
11.1. Locals Window
11.2. Watch View Window
12. Troubleshooting

NOo o~ ON =

O O 0O NN NOYOoT gl WWNNN=2 =2 2

Last updated on September 27, 2023 — v0.3

1. Preface

Starting with version 6.6, IDA Pro can debug Android applications written for the Dalvik Virtual Machine. This includes
source level debugging too. This tutorial explains how to set up and start a Dalvik debugging session.

2. Installing Android Studio

First of all we have to install the Android SDK from the official site Android Studio.

3. Environment Variables

IDA needs to know where the adb utility resides, and tries various methods to locate it automatically. Usually IDA finds the
path to adb, but if it fails then we can define the ANDROID_SDK_HOME or the ANDROID_HOME environment variable to point to the
directory where the Android SDK is installed to.

4. Android Device

Start the Android Emulator or connect to the Android device.
Information about preparing a physical device for development can be found at Using Hardware Devices.

Check that the device can be correctly detected by adb:

$ adb devices
List of devices attached
emulator-5554 device

Page 1 of 9

https://developer.android.com/studio
http://developer.android.com/tools/device.html
https://www.hex-rays.com

Copyright (c) 2023 Hex-Rays SA

5. Installing the App
IDA assumes that the debugged application is already installed on the Android emulator/device.
Please download MyFirstApp.apk and MyFirstApp.src.zip from our site. We will use this application in the tutorial.

We will use adb to install the application:

$ adb -s emulator-5554 install MyFirstApp.apk

6. Loading Application into IDA

IDA can handle both .apk app bundles, or just the contained .dex files storing the app’s bytecode. If we specify an .apk file,
IDA can either extract one of the contained .dex files by loading it with the ZIP load option, or load all classes*.dex files
when using the APK loader.

File name Method Size
res/layout/activity_display_message.xml DEFLATED 652
resflayout/activity_main.xml DEFLATED 804
res/menu/display_message.xml DEFLATED 464
resfmenu/main.xml DEFLATED 464
AndroidManifest.xml DEFLATED 2176
resources.arsc STORED 2680
resfdrawable-hdpi/ic_launcher.png STORED 5964
res/drawable-mdpific_launcher.png STORED 3112
res/drawable-xhdpi/ic_launcher.png STORED 9355
res/drawable-xxhdpific_launcher.png STORED 17889
classes.dex DEFLATED 563812
META-INF/MANIFEST.MF DEFLATED 950
META-INF/CERT.5F DEFLATED 979
META-INF/CERT.RSA DEFLATED 1203
Line 11 of 14

X cancel Search % {Help
7. Dalvik Debugger Options

The main configuration of the dalvik debugger happens resides in "Debugger > Debugger Options > Set specific options":

Page 2 of 9

https://hex-rays.com/tutorials/debugger_dalvik/MyFirstApp.apk
https://hex-rays.com/tutorials/debugger_dalvik/MyFirstApp.src.zip
https://www.hex-rays.com

Copyright (c) 2023 Hex-Rays SA

Connection Settings

ADB executable Jusrfbinfadb -
Connection string v
Emulator/device serial number emulator-5554 v

Start Application

Fill from AndroidManifest.xm]|

Package name com.example.myfirstapp -
Activity com.example.myfirstapp.MainActivity v
(Alternative) Start Command v

APK debuggable: true

Detect Local Variable Types

Always
® Auto

Never

Other Options

show object 1D

V| preset BPTS

N

@ oK & cancel

/.1. Connection Settings

7.1.1. ADB executable

As mentioned above IDA tries to locate the adb utility. If IDA failed to find it then we can set the path to adb here.

7.1.2. Connection string

Specifies the argument to the adb connect command. It is either empty (to let adb figure out a meaningful target) or a
<host>[:<port>] combination to connect to a remote device somewhere on the network.

7.1.3. Emulator/device serial number

Serial number of an emulator or a device. Passed to adb's -s option. This option is useful if there are multiple potential
target devices running. For the official Android emulator, it is typically emulator-5554.

7.2. Start Application

7.2.1. Fill from AndroidManifest.xml

Press button and point IDA to either the APK or the AndroidManifest.xml file of the mobile app. IDA then automatically
fetches the package name and application start activity, as well as the debuggable flag from the specified file.

7.2.2. Package Name

Package name containing the activity to be launched by the debugger.

Page 3 of 9

https://www.hex-rays.com

Copyright (c) 2023 Hex-Rays SA

7.2.3. Activity

Start activity to be launched by the debugger.

7.2.4. Alternative Start Command

Usually IDA builds the start command from the package and activity name and launches the APK from the command line
as follows:

am start -D -n '<package>/<activity>' -a android.intent.action.MAIN -c android.intent.category.LAUNCHER

If that does not match your desired debugging setup, you can enter an alternative start command here. Note that you
have to provide package and activity as part of the startup command.

7.2.5. APK Debuggable

The value of the debuggable flag, as extracted from the AndroidManifest.xml or the APK. APKs that do not have the
debuggable flag set (most do not) cannot be started on unpatched phones. Hence, while this value is false, IDA will
display a (silencable) warning when starting a debugging session. To produce a debuggable APK that has the flag set to
true, please revert to third-party tooling.

7.3. Detect Local Variable Types

This controls the behavior of IDA’s type guessing engine. "Always" and "Never" are pretty self-explanatory: The options
force-enable or force-disable type guessing. "Auto" means that type guessing is disabled for Android APIs < 28 and
enabled on APIs >= 28. If you work with very old (i.e. APl 23 and lower) Android devices and experience crashes during
debugging, set this option to "Never". Note that when type guessing is disabled, IDA automatically assumes int for
unknown variable types, which causes warnings on APl 30 and above.

Local Variables with Type Guessing Deactivated
File Edit Jump Search View Debugger Options Windows Help
BEd &% eaaae @& 1 @A A® CGLROF [Ig om0 AlGIE =R
N 110 A 0 0 N0 I

Library function . Regular function . Instruction Data uUnexplored External symbol . Lumina function

Debug View A Structures X Enums A
IDA View-IP X Source view: ./MainActivity.java X [# General registers] 5]
CODE:0004EE44 .line 22 *| 1P 0004EE52 (] MainRActivity_onCreateOptionsMenu
~ CODE:0004EE44 invoke-virtual {this}, <ref MainActivity.getMenuInflater() imp. @ _d
CODE: 0004EE4A move-result-object Vo
o CODE: 0004EE4C_const v1, Ox7F070001
CODE:0004EE58 .line 23
CODE : 0004EE58 const/4 vo, 1
CODE : 0004EE5A 4 C
CODE: D004EE5A locret: =
CODE:0004EESA return vo [&] Modules o =

CODE: 0004EE5A Method End
CODEIDO00EESA # —— = m e e e e e e e e th

CODE: 0004EESC # <|DWP process=
CODE:0004EE5SC # Method 5099 (0x13eb)
CODE:0004EESC word_4EESC: .short &

DATA XREF: CODE:00089BF7+i

CODE : 0004EESC Number of registers : 0xé 7] ¥
CODE:0004EESE .short 2 Size of input args (in words) : 0x2
CODE:0004EE60 .short 3 S8ize of output args (in words) : Ox3

e

CODE:0004EE62 .short 0 Number of try_items : 0x0 =
CODE:0004EE64 .int Ox809EE Debug info] Threads a &
CODE:0004EE68 .int 0x20 Size of bytecode (in 16-bit units): 0x20 =

Decimal Hex State Name

(=] 1 Ready <JDWP proces
A Ready <10> Binder_2
9
8

CODE:0004EE6C # Scurce file: MainActiwvity.java

CODE:0004EE6C public void com.example.myfirstapp.MainActivity.sendMessage(

CODE: 0004EE6C android.view.View view)

CODE:0004EE6C this 4

CONE - AANARRAC wi aw
0004EES2 0Q004EE5Z: Main, ity _onCreateOpticnsMenu@ZL+E (Synchronized with IP) -
1 »

Ready <9 Binder_1
Ready <8> Finalizerwz ..
L3

=]

@l Hex View-1 K Locals X

Name Value Type Location
b this {mActionBar=,mActivityinfo=,mAllLoaderManagers=,mAppli... com.example.myfirstapp.MainActivity * w2
¥ menu {mActionitems=,mCallback=,mContext=,mCurrentMenulnfe... com.android.internal.view.menu.MenuBuilder * w3

w0 Bad type w0

vl Bad type vl

Output]]
COECCECE . LULTAW Las SLALLSU (LAU-¥) ~U- RELSLCUUSYUSUSLaciivi

FFFFFFFF: thread has started (tid=5) <5> Compiler

FEFFFFFFF: thread has started (tid=3) <3> Signal Catcher

FFFFFFFF: thread has started (tid=2) <2> GC

FFFFFFFF: thread has started (tid=11) <11> AsyncTask #1

FFFFFFFF: thread has started (tid=12) <12> AsyncTask #2

FFFFFFFF: thread has started (tid=13) <13> Binder_3
Python>ida_kernwin.set_dock_pos ("Locals", "Hex View-1", ida_kernwin.DP_TAB)
True -

IDC

AU: idle Down Disk: 163GB

Page 4 of 9

https://www.hex-rays.com

Copyright (c) 2023 Hex-Rays SA

Local Variables with Type Guessing Activated
File Edit Jump Search View Debugger Options Windows Help
bl ¢ % @6 & YA T ELOE Dxa > oo AlGIF =R
: 110 A 0 R0 I

Library function [l Regular function [l Instruction Data uUnexplored External symbol [l Lumina function

Debug View X Structures X Enums X
IDA View-IP A Source view: ./MainActivity.java X [# General registers] 5]
CODE:0004EE44 .line 22 “| 1P 0004EE52 {5 MainRAetivity_onCreateOptionsMenu
~ CODE:0004EE44 invoke-virtual {this}, <ref MainActivity.getMenuInflater() imp. @ _d
CODE:0004EE4A move-result-ebject vo
ey CODE: 0004EE4C _const v1, 0x7JF070001
CODE:0004EE58 .line 23
CODE:0004EES58 const/4 vo, 1
CODE: 0004EESA 1 ’
CODE:0004EESA locret: =
CODE:0004EESA return vo [&] Modules o =

CODE:0004EESA Method End
CODE:0004EE5A # Bathy

CODE: 0004EESC # <]DWP process>
CODE:0004EESC # Method 5099 (Ox13eb)

CODE:0004EESC word_4EES5C: .short 6 # DATA XREF: CODE:000898F7+i
CODE : 0004EESC # Number of registers : Oxé6 7] ¥
CODE:0004EESE .short 2 # Size of input args (in words) : 0x2
CODE:0004EE60 .short 3 # Size of output args (in words) : Ox3
CODE:0004EE62 .short 0 # Number of try_ items : Ox0 [—
CODE:0004EE64 .int OxB09EE # Debug info] Threads a &
CODE:0004EE68 .int 0x20 # Size of bytecode (in 16-bit units): 0x20 Decimal (e State Name -
CODE:0004EE6C # Source file: MainActivity.java = _
CODE: 0004EE6C public void com.example.myfirstapp.MainActivity.sendMessage (101 65 Ready main
CODE : 0004EE6C android.view.View view) 102 66 Ready Signal Catcher
EERBEENIITE 1200 5 T 103 67 Ready ADB-JDWP Conn
FONE - NANARRAS wiew = wh ;
0004EE52Z 0004EES2: MainActivity onCreateDptionsMenu@aL+E (Synchronized with IP) +||[«3] 104 68 Ready Jit thread pool w .
1 » »
@l Hex View-1 A Locals X
Name Value Type Location
b this {mActionBar=,mActionModeTypeStarting=0,mActivitylnfo=,... com.example.myfirstapp.MainActivity * w2
r menu {mActionltems=,mCallback=,mContext=,mCurrentMenulnfo... com.android.internal.view.menu.MenuBuilder * w3
w0 {mActionProviderConstructorArguments={}.mActionViewCo... vo
vl 0x7F070001 V1
output 08 ®

COECCECE . LULTAW LAs SLALLSU (LAU-iV~] DLIUSL . 4J9U_L
FFFFFFFF: thread has started (tid=110) Binder:4566_2
FFFFFFFF: thread has started (tid=111) Binder:4566_3
FFFFFFFF: thread has started (tid=112) Profile Saver
FEFFFFFFF: thread has started (tid=113) RenderThread
FFFFFFFF: thread has started (tid=114) AsyncTask #1
FFFFFFFF: thread has started (tid=115) AsyncTask #2

Python>ida_kernwin.set_dock_pos ("Locals", "Hex View-1", ida_kernwin.DP_TAB)

True -
IDC

AU: idle Down Disk: 163GB

7.4. Other Options

7.4.1. Show object ID

If active, IDA shows the object ID assigned by the Java VM for composite (non-trivial) types in the local variables window.

7.4.2. Preset BPTs

If active, IDA sets breakpoints at the beginning of all (non-synthetic, non-empty) methods of the start activity class
specified in the Activity field above.

8. Path to Sources

To use source-level debugging we have to set paths to the application source files. We can do it using the "Options >
Sources path" menu item.

Our Dalvik debugger presumes that the application sources reside in the current (".") directory. If this is not the case, we

can map current directory (".") to the directory where the source files are located.

Let us place the source files DisplayMessageActivity.java and MainActivity.java in the same directory as the MyFirstApp.apk
package. This way we do not need any mapping.

9. Setting Breakpoints

Before launching the application it is reasonable to set a few breakpoints. We can rely on the decision made by IDA (see
above the presetBPTs option) or set breakpoints ourselves. A good candidate is the onCreate method of the application’s
main activity.

Page 50f 9

https://www.hex-rays.com

Copyright (c) 2023 Hex-Rays SA

We can use the activity name and the method name onCreate to set a breakpoint:

Mame Address Public =
f| viewDragHelper.setDragState@Vl 0004E9D4 P
f| viewDragHelper.setEdgeTrackingEnabled@Vi O004EAOB P
f| viewDragHelper.setMinvelocity@VF O004EAZ0D P
f| viewDragHelper.settleCapturedViewAt@zII O004EA3E P
f| viewDragHelper.shouldinterceptTouchEvent@ZL O004EASO P
f| viewDragHelper.smoothslideViewTo@ZLII 0004EC90 P
f| viewDragHelper.tryCaptureViewForDrag@ZzLI O004ECES P
f| BuildConfig._clinit @V 0004EDOO P
f| BuildConfig._init @V 0004ED24 P
f| DisplayMessageActivity. init_ @V 0004ED3C P
f| DisplayMessageActivity.onCreate@VL 0004ED54 P
f| DisplayMessageActivity.onCreateOptionsMenu@zL 0004EDAD P
f| DisplayMessageActivity.onOptionsitemSelected@ZL 0004EDCSE P
1f] MainActivity._init @V Q004EECQS P
| MainActivity.onCreate@WL O004EE20 P
|f| MainActivity.onCreateOptionsMenu@ZL O004EE44 P
|f| MainActivity.sendMessage@VL O0D04EEGC P
f] Rattr._init @V O004EEBC P
1f| R&dimen._init_@Vv 0004EED4 P
f| Rédrawable._init @V O004EEEC P
f] Rsid._init_@V 0004EF04 P
f] R$layout._init_ @V Q004EF1C P
f] R$menu._init_@v O004EF34 P
f| Rgstring._init_@v 0004EF4C P
f] Réstyle._init_@v 0004EF64 P
f] R_init_ @v O004EF7C P
1] empty str 00052BAD -
L . . - %% assarmees

Line 10138 of 16151, /MainActivity.onCreate@VL

X Cancel Search % o Help

Naturally, we can set any other breakpoints any time. For example, we can do it later, when we suspend the application.

10. Starting the Debugger

At last we can start the debugger. Check that the Dalvik debugger backend is selected. Usually it should be done
automatically by IDA:

Page 6 of 9

https://www.hex-rays.com

Copyright (c) 2023 Hex-Rays SA

LjLUSILI] Ul ida) 3% SIS LITINID W I3 3T 3 el T A

Mo debugger

R N K- Wl sl Dalvik debugger
LT | T
red External symbol] Lumina function

s XK Enums X Imports X

OAB136CDD20485E4EEZE4D4DDDCED
TF2ZF3

Module, Interface version B8
E Dex File wversion 35

If the debugger backend is correct, we are ready to start a debugger session. There are two ways to do it:

+ Launch a new copy of the application (Start process)

+ Attach to a running process (Attach to process)

10.1. Launching the App

To start a new copy of the application just press <F9> or use the "Debugger > Start process" menu item. The Dalvik
debugger will launch the application, wait until application is ready and open a debugger session to it.

We may wait for the execution to reach a breakpoint or press the “Cancel” button to suspend the application.

In our case let us wait until execution reach of onCreate method breakpoint.

10.2. Attaching to a Running App

Instead of launching a new process we could attach to a running process and debug it. For that we could have selected
the "Debugger > Attach to process..." menu item. IDA will display a list of active processes.

1D Name

2294 mple.myfirstapp

Line 1 of 1

X Cancel Search % LHelp

We just select the process we want to attach to.

11. Particularities of Dalvik Debugger

All traditional debug actions like Step into, Step over, Run until return and others can be used. If the application sources
are accessible then IDA will automatically switch to the source-level debugging.

Below is the list of special things about our Dalvik debugger:

* In Dalvik there is no stack and there is no SP register. The only available register is IP.

+ The method frame registers and slots (v, v1, ...) are represented as local variables in IDA. We can see them in the
"Debugger > Debugger Windows > Locals" window (see below)

+ The stack trace is available from "Debugger > Debugger windows > Stack trace" (the hot key is <Ctrl-Alt-S>).

« When the application is running, it may execute some system code. If we break the execution by clicking on the

Page 7 of 9

https://www.hex-rays.com

Copyright (c) 2023 Hex-Rays SA

“Cancel” button, quite often we may find ourselves outside of the application, in the system code. The value of the 1P
register is OxFFFFFFFF in this case, and stack trace shows only system calls and a lot of 0xFFFFFFFF. It means that IDA
could not locate the current execution position inside the application. We recommend to set more breakpoints inside
the application, resume the execution and interact with application by clicking on its windows, selecting menu items,
etc. The same thing can occur when we step out the application.

+ Use “Run until return” command to return to the source-level debugging if you occasionally step into a method and
the value of the IP register becomes 0xFFFFFFFF.

11.1. Locals Window

IDA considers the method frame registers, slots, and variables (vo, v1, ...) as local variables. To see their values we have to
open the "Locals" window from the "Debugger > Debugger windows > Locals" menu item.

At the moment the debugger stopped the execution at the breakpoint which we set on onCreate method.

public class MainActivity extends Activity { -
public final static String EXTRA_MESSAGE = "com.example.myfirstapp.MESSAGE";

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R. layout.activity_main);

}

@Override

public boolean onCreateOptionsMenu (Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater() .inflate (R.menu.main, menu) ;
return true;

}

/** Called when the user clicks the Send button */

public void sendMessage (View view) {
Intent intent = new Intent (this, DisplayMessageActivity.class);
EditText editText = (EditText) findViewById(R.id.edit_message) ;

0004EEZ20 13 (4EEZ0) -
1 ¥

Perform “Step over” action (the hot key is <F8>) two times and open the "Locals" window, we will see something like the
following:

Name Value Type Location
b this {mActionBar=,mActivitylnf... com.example.myfirstapp.M... vl
savedinstanceState null android.os.Bundle * v2
vD Bad type v0

If information about the frame is available (the symbol table is intact) or type guessing is enabled then IDA shows the
method arguments, the method local variables with names and other non-named variables. Otherwise some variable
values will not be displayed because IDA does not know their types.

Variables without type information are marked with "Bad type" in the "Locals" window. To see the variable value in this
case please use the "Watch view" window and query them with an explicit type (see below).

Page 8 of 9

https://www.hex-rays.com

Copyright (c) 2023 Hex-Rays SA

11.2. Watch View Window

To open the "Watch view" window select the "Debugger > Debugger windows > Watch view" menu item. In this window
we can add any variable to watch its value.

Name Value Type Location
(int)vo 0x7F030001 int v0

note that we have to specify type of variable if it is not known. Use C-style casts:

* (Object*)ve
* (String)vb
* (char*)v17
* (int)v7

We do not need to specify the real type of an object variable, the “(Object*)” cast is enough. IDA can derive the real object
type itself.

Attention! On Android API versions 23 and below an incorrect type may cause the Dalvik VM to
crash. There is not much we can do about it. Our recommendation is to never cast an integer
variable to an object type, the Dalvik VM usually crashes if we do that. But the integer cast “(int)”
is safe in practice.

IMPORTANT

Keeping the above in the mind, do not leave the cast entries in the "Watch view" window for a long time. Delete them
before any executing instruction that may change the type of the watched variable.

Overall we recommend to debug on a device that runs at least Android API 24.

12. Troubleshooting

+ Check the path to adb in the "Debugger specific options”

+ Check the package and activity names

* Check that the emulator is working and was registered as an adb device. Try to restart the adb daemon.
+ Check that the application was successfully installed on the emulator/device

+ Check the output window of IDA for any errors or warnings

* Turn on more debug print in IDA with the -z250000 command line switch.

+ Android APIs 24 and 25 are known to return wrong instruction sizes during single stepping. Try migrating to a
different Android API if you have trouble with single steps.

+ IDA exposes a subset of the JDWP specification as IDC commands. (Usually the name from the specification
prefixed with J0WP_).

+ Android APIs 23 and below crash if type guessing is enabled. Remedy this by setting the Detect Local Variable Types
option to Never or migrate to a newer Android API.

Page 9 of 9

https://docs.oracle.com/javase/8/docs/platform/jpda/jdwp/jdwp-protocol.html
https://www.hex-rays.com

	Debugging Dalvik Programs
	Table of Contents
	1. Preface
	2. Installing Android Studio
	3. Environment Variables
	4. Android Device
	5. Installing the App
	6. Loading Application into IDA
	7. Dalvik Debugger Options
	7.1. Connection Settings
	7.2. Start Application
	7.3. Detect Local Variable Types
	7.4. Other Options

	8. Path to Sources
	9. Setting Breakpoints
	10. Starting the Debugger
	10.1. Launching the App
	10.2. Attaching to a Running App

	11. Particularities of Dalvik Debugger
	11.1. Locals Window
	11.2. Watch View Window

	12. Troubleshooting

