
Diffing and Merging Databases with IDA Teams

Last updated on May 25, 2023 — v8.3

1. Overview

IDA 8.0 introduces IDA Teams - a mechanism that provides revision control for your IDA database files. Perhaps the

most essential feature of this new product is the ability to natively diff and merge databases using IDA, allowing multiple

reverse engineers to manage work on the same IDA database.

This document discusses in detail the steps involved when diffing and merging IDA databases.

Before continuing, you might want to take a quick look at the tutorial for HVUI, the GUI client for IDA Teams' revision

control functionality. It will be referenced multiple times in this document, although here we will focus specifically on the

merging functionality.

2. Inspecting changes

After having done some reverse-engineering work on an IDA database, it is possible to view those changes in a special

mode in IDA: right-click, and choose the diff action:

Copyright (c) 2023 Hex-Rays SA

Page 1 of 74

https://www.hex-rays.com

Here a new instance of IDA will be launched in a special "diff" mode:

2.1. IDA’s diff mode

This new IDA mode lets the user compare two databases, in a traditional "diff" fashion: essentially a two-panel window,

showing the unmodified file on the left and the version with your changes on the right.

2.1.1. The "Progress" widget

Represents the current step in the diff process.

Copyright (c) 2023 Hex-Rays SA

Page 2 of 74

https://www.hex-rays.com

2.1.2. The left panel

Shows the "untouched" version of the database (i.e., the one without your changes)

Copyright (c) 2023 Hex-Rays SA

Page 3 of 74

https://www.hex-rays.com

2.1.3. The right panel

Shows your version of the database (i.e., featuring your changes)

Copyright (c) 2023 Hex-Rays SA

Page 4 of 74

https://www.hex-rays.com

2.1.4. Diff region details

Notice how both panels have a little area at the bottom, that is labeled "Details".

Details are available on certain steps of the diffing process, and provide additional information about the change that is

currently displayed.

Copyright (c) 2023 Hex-Rays SA

Page 5 of 74

https://www.hex-rays.com

2.1.5. The "diffing" toolbar

The actions in the toolbar are:

• Previous chunk

• Center chunk

• Next chunk

• Proceed to the next step

• Toggle 'Details'

Using actions in the toolbar, you can now iterate through the differences between the two databases, with each change

shown in context as if viewed through a normal IDA window.

The ability to view changes in context was a major factor in the decision to use IDA itself as the diffing/merging tool for

IDA Teams.

Diff mode IDA’s toolbar actions

Previous chunk

Move to the previous change

Center chunk

Re-center the panels to show the current chunk (useful if you navigated around to get more context)

Next chunk

Move to the next change

Proceed to the next step

Move to the next step in the diffing process.

Toggle 'Details'

Toggle the visibility of the "Details" widgets in the various panels (note that some steps do not provide details, so even if

the "Details" are requested, they might not be currently visible.)

Copyright (c) 2023 Hex-Rays SA

Page 6 of 74

https://www.hex-rays.com

2.2. Terminology

It is important to note the difference between the terms "diff" and "merge".

This document will sometimes use the two terms interchangeably. This is because to IDA, a diff is just a specialized

merge. Both diffing and merging are handled by IDA’s "merge mode", which involves up to 3 databases, one of which can

be modified to contain the result of the merge.

A diff is simply a merge operation that involves only 2 databases, neither of which are modified.

This is why often times you will see the term "merge" used in the context of a diff. In this case "merge" is referring to

IDA’s "merge mode", rather than the process of merging multiple databases together into a combined database.

2.3. Using IDA as a diffing tool

We must stress the fact that performing a merge between two IDA databases is quite different than performing a merge

between, say, two text files. A change in a chunk of text file will not have an impact over another chunk.

IDA databases are not so simple. A change in one place in an idb will often have an impact on another place. For

example, if a structure mystruct changed between two databases, it will have an impact not only on the name of the

structure, but on cross-references to structure members, function prototypes, etc.

This is why IDA’s merge mode is split into a strict series of "steps":

Within a single step it is possible to go forward & backward between different chunks. But because of possible inter-

dependencies between steps, it is not possible to move backwards between steps, you can only go forward:

Since IDA’s diff mode is just a variation of its merge mode, diffing databases is also subject to this sequential application

of steps in order to view certain bits of information. That is why, in some steps (e.g., the "Disassembly/Items") IDA might

not report some changes that were performed at another level.

For instance, if a user marked a function as noret, the listings that will be shown in "Disassembly/Items" step, will not

advertise that there was a change at that place (even though the "Attributes: noreturn" is visible in the left-hand

listing), only the changes to the instructions (and data, …) are visible in the current step:

Copyright (c) 2023 Hex-Rays SA

Page 7 of 74

https://www.hex-rays.com

The change will, however, be visible at a later step (i.e., "Functions/Registry"):

Copyright (c) 2023 Hex-Rays SA

Page 8 of 74

https://www.hex-rays.com

NOTE
The changes applied during the "diff" process are only temporary. Exiting IDA (at any moment) will not

alter the files being compared.

Copyright (c) 2023 Hex-Rays SA

Page 9 of 74

https://www.hex-rays.com

2.4. Merging concurrent modifications (conflicts)

As with any collaborative tool, it may happen that two coworkers work on the same dataset (e.g., IDA database), and

make modifications to the same areas, resulting in "conflicts". Conflicts must be "resolved" prior to committing.

To do that, right-click and pick one of the "resolve" options:

IDA Teams provides the following merge strategies.

2.4.1. Interactive merging

If the option that was chosen (e.g., Interactive merge mode) requires user interaction due to conflicts, IDA will show in 3-

pane "merge" mode.

Copyright (c) 2023 Hex-Rays SA

Page 10 of 74

https://www.hex-rays.com

When a conflict is encountered, you’ll have the ability to pick, for all conflicts, which change should be kept (yours, or the

other). Every time you pick a change (and thus resolve a conflict), IDA will proceed with the merging, applying all the non-

conflicting changes it can, until the next conflict - if any. When all conflicts are resolved, you can leave IDA, and the new

resulting file is ready to be submitted.

3. Appendix A

3.1. Merge Steps

This section provides a detailed overview of the steps involved in the merge process. The list of predefined merge steps

is defined in merge.hpp of the IDASDK:

enum merge_kind_t
{
 MERGE_KIND_NETNODE, ///< netnode (no merging, to be used in idbunits)
 MERGE_KIND_AUTOQ, ///< auto queues
 MERGE_KIND_INF, ///< merge the inf variable (global settings)
 MERGE_KIND_ENCODINGS, ///< merge encodings
 MERGE_KIND_ENCODINGS2, ///< merge default encodings
 MERGE_KIND_SCRIPTS2, ///< merge scripts common info
 MERGE_KIND_SCRIPTS, ///< merge scripts
 MERGE_KIND_CUSTDATA, ///< merge custom data type and formats
 MERGE_KIND_STRUCTS, ///< merge structs (globally: add/delete structs entirely)
 MERGE_KIND_STRMEM, ///< merge struct members
 MERGE_KIND_ENUMS, ///< merge enums
 MERGE_KIND_TILS, ///< merge type libraries
 MERGE_KIND_TINFO, ///< merge tinfo
 MERGE_KIND_UDTMEM, ///< merge UDT members (local types)
 MERGE_KIND_SELECTORS, ///< merge selectors
 MERGE_KIND_STT, ///< merge flag storage types
 MERGE_KIND_SEGMENTS, ///< merge segments
 MERGE_KIND_SEGGRPS, ///< merge segment groups
 MERGE_KIND_SEGREGS, ///< merge segment registers

Copyright (c) 2023 Hex-Rays SA

Page 11 of 74

https://www.hex-rays.com

 MERGE_KIND_ORPHANS, ///< merge orphan bytes
 MERGE_KIND_BYTEVAL, ///< merge byte values
 MERGE_KIND_FIXUPS, ///< merge fixups
 MERGE_KIND_MAPPING, ///< merge manual memory mapping
 MERGE_KIND_EXPORTS, ///< merge exports
 MERGE_KIND_IMPORTS, ///< merge imports
 MERGE_KIND_PATCHES, ///< merge patched bytes
 MERGE_KIND_FLAGS, ///< merge flags_t
 MERGE_KIND_EXTRACMT, ///< merge extra next or prev lines
 MERGE_KIND_AFLAGS_EA, ///< merge aflags for mapped EA
 MERGE_KIND_IGNOREMICRO, ///< IM ("$ ignore micro") flags
 MERGE_KIND_HIDDENRANGES, ///< merge hidden ranges
 MERGE_KIND_SOURCEFILES, ///< merge source files ranges
 MERGE_KIND_FUNC, ///< merge func info
 MERGE_KIND_FRAMEMGR, ///< merge frames (globally: add/delete frames entirely)
 MERGE_KIND_FRAME, ///< merge function frame info (frame members)
 MERGE_KIND_STKPNTS, ///< merge SP change points
 MERGE_KIND_FLOWS, ///< merge flows
 MERGE_KIND_CREFS, ///< merge crefs
 MERGE_KIND_DREFS, ///< merge drefs
 MERGE_KIND_BPTS, ///< merge breakpoints
 MERGE_KIND_WATCHPOINTS, ///< merge watchpoints
 MERGE_KIND_BOOKMARKS, ///< merge bookmarks
 MERGE_KIND_TRYBLKS, ///< merge try blocks
 MERGE_KIND_DIRTREE, ///< merge std dirtrees
 MERGE_KIND_VFTABLES, ///< merge vftables
 MERGE_KIND_SIGNATURES, ///< signatures
 MERGE_KIND_PROBLEMS, ///< problems
 MERGE_KIND_UI, ///< UI
 MERGE_KIND_NOTEPAD, ///< notepad
 MERGE_KIND_LOADER, ///< loader data
 MERGE_KIND_DEBUGGER, ///< debugger data
 MERGE_KIND_LAST, ///< last predefined merge handler type.
 ///< please note that there can be more merge handler types,
 ///< registered by plugins and processor modules.
};

The list of merge steps is not final. If for example there is a conflict in structure members then the new merge phase to

resolve this conflict will be created. The same is hold for UDT, functions, frames and so on. In other words in general

case the exact number of merge steps is undefined and depends on the databases.

Each item in a merge step is assigned to a difference position named diffpos. It may be an EA (effective address), enum

id, structure member offset, artificial index and so on. In other words, a diffpos is a way of addressing something in the

database.

Every merge step starts with the calculation of differences and conflicts between items at the corresponding difference

positions. As the result there is a list of diffpos with differences or conflicts. The diffpos`s without differences are
not included in the list. Adjacent `diffpos`s are combined into a difference range called `diffrange.

The merging process operates on a difference range diffrange. For one diffrange, a single merge policy can be

selected.

3.1.1. Global settings/Database attributes

Merging of global database attributes. These attributes are mainly stored in the idainfo structure. This phase has two

subphases:

• Global settings/Database attributes/Graph mode

• Global settings/Database attributes/Text mode

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 12 of 74

https://www.hex-rays.com

3.1.2. Global settings/Processor specific

Merging of global processor options. Usually these options are stored in the idpflags netnode.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 13 of 74

https://www.hex-rays.com

3.1.3. Encodings/Registry

Merging of registered string literal encodings. These encodings are used to properly display string literal in the

disassembly listing.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 14 of 74

https://www.hex-rays.com

3.1.4. Encodings/Settings

Merging of default string encodings: what string encoding among the registered ones are considered as the default ones.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 15 of 74

https://www.hex-rays.com

3.1.5. Scripts/Registry

Merging of embedded script snippets.

When merging of embedded script snippets, the script name/language is displayed, and the "Detail" pane contains the

script source with the highlighted differences:

Copyright (c) 2023 Hex-Rays SA

Page 16 of 74

https://www.hex-rays.com

3.1.6. Scripts/Settings

Merging of the default snippet and tabulation size.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 17 of 74

https://www.hex-rays.com

3.2. Custom data/Types and Custom data/Formats

Merging of the registered custom data types and formats.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 18 of 74

https://www.hex-rays.com

3.2.1. Types/Enums

Merging of assembler level enums (enum_t). Ghost enums are skipped in this phase, they will be merged when handling

local types.

To calculate diffpos, IDA Teams matches enum members by name and maps all enums with common member names

into one diffpos.

An example of enum merging:

local_idb
 ;--------------------------
 ; enum enum_1, mappedto_1
 A = 0
 B = 1

remote_idb
 ;--------------------------
 ; enum enum_1, mappedto_1
 A = 0
 ;--------------------------
 ; enum enum_2, mappedto_2
 B = 1

In both idbs, enum constant "B" is present. However, in the remote idb "B" has a different parent enum, "enum_2".

Therefore enum_1 in the local idb corresponds to enum_1 and enum_2 in the remote idb. The user can select either

enum_1 from the local idb or enum_1 and enum_2 from the remote idb.

In other words, IDA will display both enum_1 and enum_2 in the Remote pane, indicating that the difference between the

Local and Remote databases corresponds to two separate enums, but they are treated as a single difference location.

The "Detail" pane will display the full enum definitions, with the differences highlighted:

Copyright (c) 2023 Hex-Rays SA

Page 19 of 74

https://www.hex-rays.com

3.2.2. Types/Structs

Merging of assembler level structures (struc_t).

To calculate diffpos, IDA Teams matches structs by the following attributes, in this order:

1. the structure name

2. the structure tid and size

If we fail to match a structure, then it will stay unmatched. Such an unmatched structure will have it own diffpos,

allowing the user to copy it to the other idb or to delete it altogether.

This merge phase deals with the entire structure types and their attributes. Entire structure types may be added or

deleted, and/or conflicts in the structure attributes are resolved.

If members of matched structures (at the same diffpos) differ, the conflict will be resolved later, during the Types/Struct

members/… merge phase.

In the UI, IDA will display the list of structure names, with the "Detail" pane showing the structure attributes:

Copyright (c) 2023 Hex-Rays SA

Page 20 of 74

https://www.hex-rays.com

3.2.3. Types/Type libraries

Merging of the loaded type libraries.

This merge phase uses the standard "Type libraries" widget.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 21 of 74

https://www.hex-rays.com

3.2.4. Types/Local types

Merging of local types.

To calculate diffpos, IDA Teams matches local types by the following attributes, in this order:

1. the type name

2. the ordinal number and base type

If we fail to match a type, then it will stay unmatched. Such an unmatched type will have it own diffpos, allowing the user

to copy it to the other idb or to delete it altogether.

This merge phase deals with entire types and their attributes. Entire local types may be added or deleted, and/or conflicts

in their attributes are resolved. Differences in type members (e.g., struct members) will be resolved in a separate phase:

Types/Local type members

This merge phase uses the standard "Local types" widget. The "Detail" pane displays the type definition and its attributes.

Copyright (c) 2023 Hex-Rays SA

Page 22 of 74

https://www.hex-rays.com

3.2.5. Types/Struct members/… and Types/Local type members/…

For example:

• Types/Struct members/struct_t

• Types/Local type members/struct conflict_t

These merge phases merges the conflicting members of a structure or a local type.

The "Detail" pane displays full information about the current member along with its attributes.

Copyright (c) 2023 Hex-Rays SA

Page 23 of 74

https://www.hex-rays.com

3.2.6. Types/Ghost struct comments

Ghost structs may have comments attached to them.

This merge phase handles these comments:

Copyright (c) 2023 Hex-Rays SA

Page 24 of 74

https://www.hex-rays.com

We need a separate phase for these comments in order not to lose them during merging because by default ghost types

are considered secondary to the corresponding non-ghost type. Normally during merge ghost types may be overwritten.

However, local types cannot have comments at all. This is why ghost structure comments, if created, are valuable.

3.2.7. Types/Struct members comments/…

Similarly to comments attached to entire structures, each structure member may have a comment.

The same logic applies to ghost struct member comments:

Copyright (c) 2023 Hex-Rays SA

Page 25 of 74

https://www.hex-rays.com

3.3. Addressing/Selectors

Merging of selectors.

This merge phase uses the standard widget "Selectors".

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 26 of 74

https://www.hex-rays.com

3.3.1. Addressing/Storage types

IDA Pro allocates so-called flags for each program address. These flags describe how to display the corresponding

bytes in the disassembly listing: as instruction or data.

There are two different storage methods for flags: virtual array (VA) and sparse storage (MM). The virtual array method

is the default one, it allocates 32 bits for each program address. However, for huge segments this method is not efficient

and may lead to unnecessarily huge databases. Therefore for huge segments IDA Pro uses sparse storage.

This merge phase handles the defined program ranges and their storage types.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 27 of 74

https://www.hex-rays.com

3.3.2. Addressing/Segmentation

This merge phase handles the program segmentation.

When merging segments, IDA combines them into non-overlapping groups. Each group will have its own diffpos. For

example, the following segmentations:

local_idb
 seg000:00000000
 ...
 seg000:00000020
 ...

remote_idb
 seg000:00000000
 ...
 seg001:00000010
 ...
 seg001:00000020

will result in a single diffpos:

Copyright (c) 2023 Hex-Rays SA

Page 28 of 74

https://www.hex-rays.com

The "Detail" pane displays segments in the combined group with their attributes.

When merging segment, IDA tries to move the segment boundaries in a way that preserves the segment contents. If it

fails to do so, the conflicting segments are deleted and new ones are created.

3.3.3. Addressing/Segment groups

Merging of segment groups. Segment groups are used only in OMF files. They correspond to the group keyword in

assembler.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 29 of 74

https://www.hex-rays.com

3.3.4. Addressing/Segment register/…

Some processor have so-called segment registers. IDA Pro knows about them and can remember their value (one value

per address range).

For example, the x86 processor has ds, ss, and many other registers. IDA Pro can remember that, say, ds has the value of

1000 at the range 401000..402000.

This merge phase handles segment registers. For each register, a separate merge phase is created. It contains address

ranges: inside each address range the value of the segment register stays the same.

To prepare diffpos, IDA Teams combines segment register ranges into non-overlapping ranges. diffpos is a range

number.

The "Detail" pane displays segment register ranges in diffpos with the value and the suffix that denotes the range type

(u-user defined, a-automatically inherited from the previous range)

Copyright (c) 2023 Hex-Rays SA

Page 30 of 74

https://www.hex-rays.com

3.3.5. Addressing/Orphan bytes

The database may have bytes that do not belong to any segment.

To prepare diffpos, IDA Teams groups orphan bytes in the databases into nonintersecting ranges. diffpos is a range

number.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 31 of 74

https://www.hex-rays.com

3.3.6. Addressing/Patched

Merging of the patched bytes.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 32 of 74

https://www.hex-rays.com

3.3.7. Addressing/Byte values

Byte values in segments may differ even for non-patched addresses, for example if a snapshot of the process memory

was taken during a debugger session.

IDA Teams combines the sequential bytes in one diffpos.

This merge phase uses the standard "IDA-View" widget.

The "Detail" pane displays the conflicting byte values.

Copyright (c) 2023 Hex-Rays SA

Page 33 of 74

https://www.hex-rays.com

3.3.8. Addressing/Fixups

Merging of fixup records.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 34 of 74

https://www.hex-rays.com

3.3.9. Addressing/Manual memory mapping

Merging of memory mappings.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 35 of 74

https://www.hex-rays.com

3.3.10. Symbols/Exports

Merging of exported symbols.

Merge phase uses the standard "Exports" widget.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 36 of 74

https://www.hex-rays.com

3.3.11. Symbols/Imports

Merging of imported symbols.

Merge phase uses the standard "Imports" widget.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 37 of 74

https://www.hex-rays.com

3.3.12. Disassembly/Items

When merging, IDA Teams compares disassembly items (instructions and data). IDA Teams compares disassembly

items by length, flags, opinfo, name, comment, and netnode information (NALT_* and NSUP_* flags).

This merge step uses the standard "IDA-View" widget so that items can be viewed in their context. For example:

Copyright (c) 2023 Hex-Rays SA

Page 38 of 74

https://www.hex-rays.com

3.3.13. Comments/Anterior lines and Comments/Posterior lines

Merging of extra comments.

This merge phase uses the standard "IDA-View" widget.

The "Detail" pane displays comment content.

Copyright (c) 2023 Hex-Rays SA

Page 39 of 74

https://www.hex-rays.com

3.3.14. Disassembly/EA additional flags

Merging of additional flags aflags_t.

Each disassembly item may have additional flags that further describe it.

This merge phase uses the standard "IDA-View" widget.

The "Detail" pane displays additional flags.

Copyright (c) 2023 Hex-Rays SA

Page 40 of 74

https://www.hex-rays.com

3.3.15. Disasembly/Hidden ranges

To prepare diffpos, IDA Teams groups hidden ranges into nonintersecting ranges. diffpos is a range number.

The "Detail" pane displays the hidden range description.

Copyright (c) 2023 Hex-Rays SA

Page 41 of 74

https://www.hex-rays.com

3.3.16. Disassembly/Source file ranges

To prepare diffpos, IDA Teams groups source file ranges into nonintersecting ranges. diffpos is a range number.

The "Detail" pane displays source file definition.

Copyright (c) 2023 Hex-Rays SA

Page 42 of 74

https://www.hex-rays.com

3.3.17. Functions/Registry

Function definitions (func_t) are merged using the standard "Functions" widget, while the "Detail" pane displays function

attributes:

Copyright (c) 2023 Hex-Rays SA

Page 43 of 74

https://www.hex-rays.com

3.3.18. Functions/IM flags

Merging of instruction kinds.

To simplify decompilation, IDA has the notion of the instruction kind:

• PROLOG instruction

• EPILOG instruction

• SWITCH instruction

This merge phase uses the standard "IDA-View" widget.

The "Detail" pane displays instruction kind.

Copyright (c) 2023 Hex-Rays SA

Page 44 of 74

https://www.hex-rays.com

3.3.19. Functions/Frames (global)

This merge phase deals with the entire function frames. Function frame may be added or deleted.

If members of the matched function frame differ, the conflict will be resolved later during the Functions/Frame/… merge

phase. Each differing frame will be assigned its own merge step.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 45 of 74

https://www.hex-rays.com

3.3.20. Functions/Frame

Merging of function frame details.

A separate phase is created for each function. For example:

• Functions/Frames/sub_401200 at 401200

• Functions/Frames/_main at 4014E0

Every of these phases merges the conflicting members of the function frame.

The "Detail" pane displays the detailed information about the current function frame member.

Copyright (c) 2023 Hex-Rays SA

Page 46 of 74

https://www.hex-rays.com

3.3.21. Functions/SP change points

Merging of function SP change points.

This merge phase uses the standard "IDA-View" widget.

The "Detail" pane displays the SP change point details.

Copyright (c) 2023 Hex-Rays SA

Page 47 of 74

https://www.hex-rays.com

3.3.22. Cross-references/Flow

Merging of regular execution flow from the previous instruction. IDA stores cross-references that correspond to regular

execution flow in a special format, different from other cross-reference types.

This merge phase uses the standard "IDA-View" widget.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 48 of 74

https://www.hex-rays.com

3.3.23. Cross-references/Code

Merging of code cross-references.

This merge phase uses the standard "IDA-View" widget.

The "Detail" pane displays code references to address (diffpos).

Copyright (c) 2023 Hex-Rays SA

Page 49 of 74

https://www.hex-rays.com

3.3.24. Cross-references/Data

Merging of data cross-references.

This merge phase uses the standard "IDA-View" widget.

The "Detail" pane displays data references to address (diffpos).

Copyright (c) 2023 Hex-Rays SA

Page 50 of 74

https://www.hex-rays.com

3.3.25. Marked positions/…

The following merge phases exist:

• Marked positions/structplace_t

• Marked positions/enumplace_t

• Marked position/idaplace_t

They deal with merging of bookmarks for:

• structures

• enums

• addresses

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 51 of 74

https://www.hex-rays.com

3.3.26. Debug/Breakpoints/…

The following merge phases exist:

• Breakpoints/Absolute bpts

• Breakpoints/Relative bpts

• Breakpoints/Symbolic bpts

• Breakpoints/Source level bpts

They deal with merging of various debugger breakpoints.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 52 of 74

https://www.hex-rays.com

3.3.27. Debug/Watchpoints

Merging of watch points.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 53 of 74

https://www.hex-rays.com

3.3.28. Dirtree/$ dirtree/…

The following merge phases exist:

• Dirtree/$ dirtree/tinfos

• Dirtree/$ dirtree/structs

• Dirtree/$ dirtree/enums

• Dirtree/$ dirtree/funcs

• Dirtree/$ dirtree/names

• Dirtree/$ dirtree/imports

• Dirtree/$ dirtree/bookmarks_idaplace_t

• Dirtree/$ dirtree/bookmarks_structplace_t

• Dirtree/$ dirtree/bookmarks_enumplace_t

• Dirtree/$ dirtree/bpts

They deal with merging of the standard dirtrees.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 54 of 74

https://www.hex-rays.com

Copyright (c) 2023 Hex-Rays SA

Page 55 of 74

https://www.hex-rays.com

3.3.29. Misc/Try blocks

Merging of try and catch block info.

The "Detail" pane describes try block.

3.3.30. Misc/Virtual function tables

Merging of virtual function tables.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 56 of 74

https://www.hex-rays.com

3.3.31. Misc/Notepad

Merging of database notepads. Each line of text is a diffpos.

The "Detail" pane is absent.

Copyright (c) 2023 Hex-Rays SA

Page 57 of 74

https://www.hex-rays.com

3.3.32. Processor specific/…

Each processor plugin creates its own merge steps to handle the processor plugin’s specific data.

For example, the PC processor module adds the following merge steps:

• Processor specific/Analyze ea for a possible offset

• Processor specific/Frame pointer info

• Processor specific/Pushinfo

• Processor specific/VXD info 2

• Processor specific/Callee EA|AH value

• …

Copyright (c) 2023 Hex-Rays SA

Page 58 of 74

https://www.hex-rays.com

Copyright (c) 2023 Hex-Rays SA

Page 59 of 74

https://www.hex-rays.com

3.3.33. Plugins/Decompiler/…

Merging of the decompiler data starts with the global configuration parameters from hexrays.cfg:

To handle decompilation of specific functions, IDA stores the decompilation data in a database netnode named Hexrays

node.

The merge step Plugins/Decompiler/Hexrays nodes adds or deletes netnodes, indicating which functions have or

haven’t been decompiled in each databases:

Copyright (c) 2023 Hex-Rays SA

Page 60 of 74

https://www.hex-rays.com

The decompilation data for matching functions is compared using the following attributes:

• Plugins/Decompiler/…/Numforms

• Plugins/Decompiler/…/mflags

• Plugins/Decompiler/…/User-defined funcargs

• Plugins/Decompiler/…/User-defined variable mapping

• Plugins/Decompiler/…/User-defined lvar info

• Plugins/Decompiler/…/lvar settings

• Plugins/Decompiler/…/IFLAGS

• Plugins/Decompiler/…/User labels

• Plugins/Decompiler/…/User unions

• Plugins/Decompiler/…/User comments

• Plugins/Decompiler/…/User-defined call

If there is a difference, each comparison criteria will be assigned its own merge step. Each step will use the standard

"Pseudocode" widget so that differences can be viewed in-context with the full pseudocode:

Copyright (c) 2023 Hex-Rays SA

Page 61 of 74

https://www.hex-rays.com

Copyright (c) 2023 Hex-Rays SA

Page 62 of 74

https://www.hex-rays.com

Copyright (c) 2023 Hex-Rays SA

Page 63 of 74

https://www.hex-rays.com

Copyright (c) 2023 Hex-Rays SA

Page 64 of 74

https://www.hex-rays.com

Copyright (c) 2023 Hex-Rays SA

Page 65 of 74

https://www.hex-rays.com

Copyright (c) 2023 Hex-Rays SA

Page 66 of 74

https://www.hex-rays.com

3.3.34. Loader data merge phases

The file loader that was used to create the database may have stored some data in the database that is specific to the

loader itself.

There are merge phases for each loader, for exmaple:

• Loader/PE file/…

• Loader/NE file/…

• Loader/ELF file/…

• Loader/TLS/…

• Loader/ARM segment flags/…

Copyright (c) 2023 Hex-Rays SA

Page 67 of 74

https://www.hex-rays.com

Copyright (c) 2023 Hex-Rays SA

Page 68 of 74

https://www.hex-rays.com

3.3.35. Debugger data merge phases

To handle the differences in debugger data the following merge steps may be created:

• Debugger/pin

• Debugger/gdb

• Debugger/xnu

• Debugger/ios

• Debugger/bochs

• Debugger/windbg

• Debugger/rmac_arm

• Debugger/lmac_arm

• Debugger/rmac

• Debugger/lmac

As can be deduced by their names, they handle debugger-specific data in the database.

Copyright (c) 2023 Hex-Rays SA

Page 69 of 74

https://www.hex-rays.com

3.3.36. Other plugins merge phases

There are a number of IDA plugins that need to merge their data.

For example:

• Plugins/PDB

• Plugins/golang

• Plugins/EH_PARSE

• Plugins/Callgraph

• Plugins/swift

Any third party plugin may add merge phases using the IDA SDK. We provide sample plugins that illustrate how to add

support for merging into third party plugins.

Copyright (c) 2023 Hex-Rays SA

Page 70 of 74

https://www.hex-rays.com

Copyright (c) 2023 Hex-Rays SA

Page 71 of 74

https://www.hex-rays.com

4. Appendix B

4.1. Using IDASDK to add merge functionality to plugin

4.1.1. Overview

Any plugin that stores its data in the database must implement the logic for merging its data. For that, the plugin must

provide the description of its data and ask the kernel to create merge handlers based on these descriptions.

The kernel will use the created handlers to perform merging and to display merged data to the users. The plugin can

implement callback functions to modify some aspects of merging, if necessary.

The plugin may have two kinds of data with permanent storage:

1. Data that applies to entire database (e.g. the options). To describe this data, the idbattr_info_t type is used.

2. Data that is tied to a particular address. To describe this data, the merge_node_info_t type is used.

The kernel will notify the plugin using the processor_t::ev_create_merge_handlers event. On receiving it, the plugin

should create the merge handlers, usually by calling the create_merge_handlers() function.

4.1.2. Plugin

The IDA SDK provides several sample plugins to demonstrate how to add merge functionality to third party plugins:

• mex1/

• mex2/

• mex3/

• mex4/

The sample plugin without the merge functionality consists of two files:

• mex.hpp

• mex_impl.cpp

It is a regular implementation of a plugin that stores some data in the database. Please check the source files for more

info.

We demonstrate several approaches to add the merge functionality. They are implemented in different directories mex1/,

mex2/, and so on.

The MEX_N macros that are defined in makefile are used to parameterize the plugin implementation, so that all plugin

examples may be used simultaneously.

You may check the merge results for the plugins in one session of IDA Teams. Naturally, you should prepare databases

by running plugins before launching of IDA Teams session.

4.1.3. Merge functionality

The merge functionality is implemented in the merge.cpp file. It contains create_merge_handlers(), which is responsible

for the creation of the merge handlers.

Variants:

mex1/

Merge values are stored in netnodes. The kernel will read the values directly from netnodes, merge them, and write

back. No further actions are required from the plugin. If the data is stored in a simple way using altvals or supvals,

this simple approach is recommended.

mex2/

Merge values are stored in variables (in the memory). For more complex data that is not stored in a simple way in

netnodes, (for example, data that uses database blobs), the previous approach cannot be used. This example shows

Copyright (c) 2023 Hex-Rays SA

Page 72 of 74

https://www.hex-rays.com

how to merge the data that is stored in variables, like fields of the plugin context structure. The plugin provides the

field descriptions to the kernel, which will use them to merge the data in the memory. After merging, the plugin must

save the merged data to the database.

mex3/

Uses mex1 example and illustrates how to improve the UI look.

mex4/

Merge data that is stored in a netnode blob. Usually blob data is displayed as a sequence of hexadecimal digits in a

merge chooser column. We show how to display blob contents in detail pane.

5. Resolving conflicts in a file

When a user needs to commit changes made to a file, but that same file has received other modifications (likely from

other users) in the meantime, it is necessary to first "merge" the two sets of modifications together.

When the two sets of modifications do not overlap, merging is trivial - at least conceptually. But when they do overlap,

they produce conflict(s).

Since IDA Teams focuses on collaboration over IDA database files, the rest of this section will focus on the different

strategies that are available for resolving conflicts among those.

IDA Teams comes with multiple strategies to help in conflict resolution of IDA database files:

• Auto-resolve (if no conflicts)

• Auto-resolve, prefer local

• Auto-resolve, prefer remote

• Interactive merge mode

• Use local, discard remote

• Use remote, discard local

5.1. Auto-resolve (if no conflicts)

Launch IDA in a non-interactive batch mode, attempting to perform all merging automatically.

If any conflict is discovered, bail out of the merge process, and don’t modify the local database.

5.2. Auto-resolve, prefer local

Launch IDA in a non-interactive batch mode, attempting to perform all merging automatically.

If a conflict is discovered, assume that the "local" change (i.e., the current user’s change) is the correct one, and apply

that.

Once all merging is done and conflicts are resolved, write those to the local database and exit IDA

5.3. Auto-resolve, prefer remote

Launch IDA in a non-interactive batch mode, attempting to perform all merging automatically.

If a conflict is discovered, assume that the "remote" change (i.e., the change made by another user) is the correct one,

and apply that.

Once all merging is done and conflicts are resolved, write those to the local database and exit IDA

5.4. Interactive merge mode

Manual merge mode.

This will launch IDA in an interactive, 3-pane mode, allowing the user to decide how to resolve each conflict.

Copyright (c) 2023 Hex-Rays SA

Page 73 of 74

https://www.hex-rays.com

Once all merging is done and conflicts are resolved, exit IDA and write the changes to the local database.

5.5. Use local, discard remote

Select the local database, ignoring all changes in the remote database.

No IDA process is run.

5.6. Use remote, discard local

Select the remote database, ignoring all changes in the local database.

No IDA process is run.

Copyright (c) 2023 Hex-Rays SA

Page 74 of 74

https://www.hex-rays.com

	Diffing and Merging Databases with IDA Teams
	1. Overview
	2. Inspecting changes
	2.1. IDA’s diff mode
	2.2. Terminology
	2.3. Using IDA as a diffing tool
	2.4. Merging concurrent modifications (conflicts)

	3. Appendix A
	3.1. Merge Steps
	3.2. Custom data/Types and Custom data/Formats
	3.3. Addressing/Selectors

	4. Appendix B
	4.1. Using IDASDK to add merge functionality to plugin

	5. Resolving conflicts in a file
	5.1. Auto-resolve (if no conflicts)
	5.2. Auto-resolve, prefer local
	5.3. Auto-resolve, prefer remote
	5.4. Interactive merge mode
	5.5. Use local, discard remote
	5.6. Use remote, discard local

