Shattering the monaolith:

automartic detection of
INlined functions

Ali Rahbar, Elias Bachaalany, Ali Pezeshk o MiCI‘OSOft

» Who we are

» Function inlining

» Forced inlining and reverse engineering
» Detecting inlined functions(high level)

» Detecting inlined function in binary
» Visualization
» Refactoring (Binary rewriting)

» Ali Rahbar : Microsoft TWC
» Elias Bachaalany: Microsoft TWC
» All Pezeshk: Microsoft TWC

Background

» Embedding the function body in place of a function call

» Used as an optimization by compilers

» In C and C++ users can request inlining

inline int max(int a, int b)

{
(a > Db) 2 a : b;

}

» Could be forced in various compilers:

Gcc :__attribute ((always_inline))

MSVC :_forceinline

Forced inlining and reverse engineering

» Simple control flow obfuscation
» Increases code size
» Increases complexity of analysis

» ldenfification of equivalent code is nof frivial

L=]

-

Algorithm

Problem

» We don’'t want to re-analyze a code snippet only to find

out that we had already seen that before

» Recognizing similar code by hand can become difficult

when looking at a large number of inlined functions
» Complex navigation and visualization

» Dirty after decompilation

» A tool that can

» Automatically detect inlined functions
» Match equivalent inlined functions
» Simplify visualization and inferaction

» Rewrite the binary to outline inlined functions

How to detect inlined functions

Simplifying the problem:

» Only multiple instance of an inlined function are important to

detect

» Multiple equivalent code sequence could be potentially an

inlined function

We need a way to detect multiple equivalent code sequences

High level algorithm

|) Build the CFG and break the program into blocks
7] Compare all blocks to construct a list of equivalence

3) For each pair of equivalent blocks, try to construct/find

the biggest equivalent subgraphs

[(2,7,26),(5,13,33),(4,14,34),(9,22,42)]

subgraph,{(2.5).(2.4).(4,9)} == subgraph,{(7.13).(7.14),(14,22)}

What are blocks

» Blocks are “basic block” created from the control flow

» A sequence of instruction that do not modify the control flow are in the
same block

» Any change in the control flow, starts a new block

@ ra =
loc_4PA7EBA:
imul a, 4b2h
®or eax, eax
mov [ebp+uar 8], eax
mou [ebp+pBlock], a
test a, a
jle loc_4BABC3
{2]
@ ra =
loc_4B8A7DB:
cmp eax, 1
jz loc_L4BABB7
L
@ s =
cmp eax, 2
jnz short loc_4BASBE

Block comparison (1)

» Can’'t simply compare the bytes in two blocks

» Regqisters change(register allocation):

mowv eax, [ebp+var_24] mou edi, [ebp+pBlock]
cmp eax, 1 cmp edi, 1

jz loc 4BCEGB jz loc 4BBCDD

cmp eax, 2 cmp edi, 2

jnz loc_ 48CDCA jnz short loc 48BC3D
add a, Pax add a, edi

mouv eax, BAAABBBABH mov eax, BAAABABABH
imul a imul a

add edx, a add edx, a

sdr edx, BFh sar edx, BFh

mov edi, edx mouw edi, edx

shr edi, 1Fh shr edi, 1Fh

add edi, edx add edi, edx

imul edi, 7Bh imul edi, 7Bh

®or esi, esi =or esi, esi

test edi, edi test edi, edi

Jjle loc_ 4BCEGE jle loc_ 48BCDS

Block comparison (2)

» Instructions are reordered(instruction scheduling):

ADDS R1, R3, #2 LDR R3, =8XAAABABAE
LDR.W R3, =B=AAABABAB ADDS R1, R2, #2

SMULL . W R3, RZ2, R1, R3 SHULL .o R3, RZ2, R1, R3
ADDS R3, RZ2, R1 ADDS R3, R2, R1

ASAS R3, R3, #O=F ASRS R3, R3, #oxF

AbD . W R3, R3, R3,L3R#31 ADD . W R3, R3, R3,L3R#31
MOUS R2, Hax7B HOUS R2, #0x7B

MUL . W RS, R3, R2 HUL . W RS, R3, R2

MOUs R4, #O HOUS R4, #8

CHP RS, #@ CHP RS, #8

BLE loc_4BA256 BLE loc 4B8AGEE

Block comparison (3)

» Small variations:

Mo
HOUS
BFI.U
ORR .U
STR
STR
ORR . W
STR
ORR .Y
STR

R2,
RZ,
R2,

R2,
R3,

R3,
R3,
R2,

R

#1

R3, #0, #oxc
R2, #0x400
[R4]

[RY,H4]

R2, #0x800
[RY4,#8]

R2, #0xC00
[RY,#0xC]

HMOUS
BFI.W
ORR . W
5TR
5TR
ORR .U
5TR
ORR .U
STR

11
R3, #0, #0xC
R1, #0x400
[RB]

[RO,#4]

R1, #0x800
[RO, 18]

R1, #0xCOD
[RO,H#0xC]

1) Digest of sequence of instruction types in the block:

An ordered representation of instruction types

2) Digest of the set of instructions and operand types in the block:
An order agnostic combination of instruction types and operand types
(Small Prime Product)

3) Digest of frequency of instruction types and operands types

vV v v v V

Build a CFG
Use digest2 to calculate block equivalence of all blocks w
Take each pair of equivalent blocks as head nodes

Try to construct the longest equivalent subgraphs with the strictest digest

Switch to fuzzier digest if no match is found

Find equivalent
mma Childswith strict
hash

Match found

Find equivalent

Extend equivalent ¢ childs with loosier
sdubgraphs hash

Match found

Save equivalent
subgraphs

IDA Plugin
Details

BBGrouper

» Python library that contains a set of algorithms
» Basic Block abstraction layer (BB_types.py)
» A set of utility functions (BB_util.py)
» An IDA support library (BB_ida.py)

» GraphSlickis an IDA Pro plugin

» Analyze and visualize
» Result can be interactively modified by the user
» The algorithm is processor agnostic

» The Ul represents the results using:

» A chooser window (aka “GS Panel”): displays the BB
Analyze() function call results in a list
» A user graph window (aka “GS View"):
» displays a user graph containing the matching results
» Allows interactivity to manipulate the grouping results

» Allows coloring and navigating through the results

GraphSlick — Panel (1)

The GS panel shows all the nodes and under which parent group they fall

Each parent group contains various group each containing a set of nodes
that make up similar code pattern in various program location

» “dllocate and fill with random” parent group has four groups

» Each group is composed of 9 basic blocks

ﬁ Graph Slick - Panel

Mode

codel-00404740.bbgroup
allocate and fill with random (ID_0) C{4)
C(8):(8%:A0ACB0:A0ACET, S0:A0ACEBTADACCSE, 91:40ACCEADACCD, 95:40AD1 7404020, 92:40ACCO40ACDF, 9., JDACBD

C{93:(1 3 40AFEE:ADAFTS, 135:40AF7T3:40AF86, 136:40AFBEADAFEE, 141:40AFD0:A0AFES, 137:40AFBB:A0AFOD, 1... 4DAFBE
C(9):(35:40ACB0:40ACET, 90:40ACEBT:40ACCS, 91:404CCEADACCD, 95:40AD1T:40AD20, 92:40ACCD:40ACDF, 9., 40ACBD
C(9):(134:A0AFRE:A0AFTS, 135:404F75:40AF86, 136:40AF26:40AF8E, 141:40AFD0:A0AFES, 137:40AFBB:A0AFID, 1... 40AFGE

GraphSlick — Panel (2)

» These are the 9 nodes that make up “allocate and fill with random’™ code
logic

It is composed of ? basic blocks

These 9 blocks could have been an inlined function

Or code that has been copied and pasted

§ CADE HREF: doitedioy)
novdgu xmaword ptr [eax]. xml
movdgu xeed, xpesord prr [eax]
lea eax, [eaxsion]

paddb i, xna?

novdgu xmward ptr [eax-18], xnnl
dec #ox

nz shert loc WOREBY

GraphSlick — Before and after

Before

NGl o i ™

After

In this example, we
automatically
identified similar
subgraphs and
grouped them
under a single
parent group

Note how the graph
IS much more
simpler

GraphsSlick — Automatic grouping on x386

5G_2(ID_2) Clg)
C(11):(84:40ACEA:ADACEF, B5:A0ACEFRADACSS, BR:A0ACAT-A0ACED, 86:40ACS4:40ACA2, 89:40ACB0:A0ACET, 87... 40ACEA
C(11):(106:40ADAC:A0ADB1, 107:404DB1:40ADD3, 110:40ADEQ:A0ADES, 108:40ADD3:40ADDE, 111:40ADESA04... J0ADAC
C{11):(84:A0ACEAADACEF, 83:A0ACEFA0ACH, BRADACATADACED, BE:A0ACTAA0ACA2, 80: 404 CB0:A0ACET, 87... ADACEA
C1:0106:40ADACADADE, 107:40ADB1:40ADD3, 110:404DENADADES, 108:40ADD3:A0ADDE, 111:4040E%:404,., ADADAL
C(11):(84:4DACEAJOACEF, B3:40ACEFADACS, BRA0ACAT:A0ACED, 86:40ACS4:40ACA2, 89:40ACBD:40ACET, 87... 40ACHA
C11):(106:40ADAC:A0ADE1, 107:404DE1:40ADD3, 110:40ADEQ:A0ADES, 108:40ADD3:40ADDE, 111:40ADES%:404... 40ADAC

TR In this example, we can see how the GraphSlick
L | panel:
« Created one parent group with 6 sub groups
o e B « Each sub-group is composed of 11 basic
i blOCkS

Rouda Kpawrd ptr [eax], 1
moudgu eemd, xmasord ptr[eax]
lea - eax, [eaxsrmn]

pasds e, xnaz
noudnu crmwsrd ptr [eax-16], xnl
e

jne.

shert ine nenpen

GraphSlick — Automatic coloring

» Here we see a function with no similar basic blocks
» Each basic block is its own parent block

» Each parent block is automatically assigned a distinct color

§ cowe e e w1 ety Graph Slick - Panel

Node @
codel-00407B19.bbgroup
SG_00D_0) C(1)
C(1):(0:407B19:40785C)
SG_10D_T) C(1)
C(1:(1:407B5C:407873)
$6_20D_2) Cll)y
C(1):(2:407B73:407882)
$6_30D.3) C(1)
e C(1):(3:407882:407B97)
SG_4 (ID_4) C{1)
C(1):(4:407BIT:407BAB)
$6_50D_5) C(1)
C(1):(5:407BAB:407BF3)
SG_6 ID_8) C(1)
C(1:(6:407BF3:407C07)
SG_70D_7) C(1)
(1):(7:407COT:407COA)
$G_80D_8) C(1)
C(1):(&:407C0A407CIA)
$G_9 (ID_9) C{1)
CI1:(2:407C14:407C18)
$6_10(D_10) C(1)
Cl:010:407C1B:407C22)
$G_11(D_11) C(1)
CU:11:407C22407C27)
$6_12D_12) C(1)
C(1):012:407C27:407C29)
SG_13.0D_13) C(1)
C(1):013:407C29:407C2F)
$G_14(1D_14) C(1)
CI:(14:407C2R407C34)
$6_15D_15) C(1)
B Cl1):015:407C34:407C44)
SG_16(1D_16) C(1)
Cl1:(16:407CA4407C53)
SG_17(D_17) C(1)
C(1):(17:407C52:407C 5B)
SG_18(D_18) C(1)
C(1):018:407C5B:407CT3)
5G_19(10_19) C(1)
CI1:(12:407CT3407CTT)
$6_20(ID_20) C(1)
C(1):(20:407CTT:407CTD)
$G_21(D_21) C(1)
C(1:(21:407CTD:407C9T)
$6_22(ID_22) C(1)
it anaro
< >

Line 10f 71

s !
i ¢

FERGEEIEE uIW

prsse Ly

GraphSlick — Automatic color shades

» The “doit” function has
the body of
“simple_loop1” inserted
twice

» The GS panel detected 6
basic blocks per inlined
function call

Graph Slick - Panel

Mode
codel-0040EBE0.bbgroup
simple_loop! (ID_0) C(2)
C(8):(10:40EC55:40EC5E, 11:40EC5E:40ECE0, 12:40ECE0:40ECET, 13:40ECET:40ECEE, 14:40ECEE:40ECTE, 15:40EC... +

C(6):(18:4DEC90:40ECY9, 19:40ECH9:4DECIB, 20:40ECIB:40ECA2, 21:40ECA2:0ECAY, 22:40ECAS:40ECB1, 23:40E... +
orphan_nodes (orphan_nodes) C(13)

C(1):(0:40EBB0:4DEBEE)

C(1):(1:40EBBE:4DEBS5)

C(1):(2:40EB93:4DEBIB)

C1:(3:40EBIB:40EBAR) 1
CO1:(4:40EBAF-40EBC3) i f s . .
CO(G4DEBCI40EBDT) int _ forceinline simple_loopl(int a)
C(1:(6:40EBDT:40EBEB)
C(1):(7:40EBEB:40ERFF)
C(1):(%:40EBFF:40EC13)

int sigma = 8;

C(1):(9:40EC30:40EC55) int r = 1;

C(1):(16:40ECTB:40ECEB) for (int i = @; i < a; i++)
COL(17:40ECBA0ECED) {

C(11:(24:40ECBEADECED]

» All the groups belonging
to the same parent
group have the same
color but with different
shade

sigma += 1i;

r *= sigma;

if (1%2==1)
Tlne2of13 r -= sigma;

if (r > 2000)

r=2;
else if (r » 1008)
r=1;

1

return sigma;

» The other “Orphan e

int doit(int a)

nodes’ are just regular SN
blocks " o= simple loopl(s * 1981);

Neafeleife]t[gle

Refactoring overview

» Add a sufficiently large section to the binary

» Script will
» Move snippets of code for inlined function instances found to the new section
» Fix up the moved code for calls, jumps/branches, and returns
» Patch the original location to do a call in place of the inlined function instance

» Patch after the call to handle return value to stitch back the original code flow

Note that the following description is for ARM

Glance at an inlined function instance

v v
5
2
|
v
3
v /(Exit 2
Exit 1)\ O N E
|___JI____|
B e T | |
| | o
| | 7

Moving an inlined function instance (1)

Relative
distance = A,

Ay s

Relaftiv
distfanc
= Ay 4

Relative
distance = A; ,

A s 1

Block A is not part
/ of the instance

FIXing branches/jumpps

» Gaps are preserved when creating the clone

» Relative branches/jumps that fall back into the
Instance are good to go

» Calls outside the instance are good to go as well
(absolute address)

» Any absolute jumps/branches into the instance need
to be patched

» Relative jumps may need to be patched as well

Moving an inlined function instance (2):

Envelope

270 byte pre-
landing pad

270 byte post-
landing pad

Fixup pad

Relative address fixups (1)

» If jump/branch destination falls in @
gap or the pre/post landing pads
we just add a jump to the fix up at
that location

» This helps handling thumb mode 2- v Y
byte relative jumps/branches,) i
since the fixup pad can be farther "
than 258 bytes away and the 3 ;
instruction size won't allow larger 1

distance specified otherwise

Relative address fixups (2)

» Depending on Ag 3 We need
to patch the branch/jump
instruction to go to the fixup

location in the fixup pad
1 3
4
v v
i 1
2
|
v
5
= B
6
! Relative distanc
7 A6,B
4
Happens to f

outisde the po
Fixup for A landing pad
Fixup for B So here the
G branch/jump ne
Return value to be patche

logic for caller

instance

Fixing the tall through to outside of instance

» Fall through location is the
instruction address right after
end of block 7, which

happens to fall outside the

instance ' :

g
» We put ajump to the fixup for 2 i 1

C at this location (there’s 3
either a gap here or we're in 3 . Jump 1o fixup C is :
the post-landing pad) I im;ﬁii;ﬁe,y))
after fall through)

FiIxing up flow to outside of instance

» The fixup block for each branch/jump to outside the instance sets a
constructed unique return value and returns

» Forinstance fixup for A looks like this

MOV.W RO, #1; return value for fixup A
MOV PC, LR

» Then at call location we can use the return value and stich back the flow
to the original form with a decision tree

Patching the call site

» We need af least 4 bytes for the | |
call, so we put restrictions on the b |

size of the first block of the instance Call cloned 2
instance
3
4
v v
5
2 » 1
'
v
5
3 6
6
7
a Jump to fixup C
i ________ i Jump to fixup A
| ! I
: B : Fixup for A
7 | |
: : Fixup for B

| |
| |
! |
I |
' |
: A I Fixup for C
' |
' |
' [
' |
[|
|

Adding return value handling

» We need another 4 bytes for the jump to | |
the return value handler logic which we |

place in the fixup pad after the fixup Callcloned
instance
Jump to
b | oC ks return value 3
handler
4
v
» Sample code for the patch . 1
2 »
BL sub_9C9488 ; Call the refactored instance function l
B.uW loc_9C95BA ; Stitch back code flow. Jump to the location in fixup pad that handles this instance v
5
. 3 E
» Sample code for return value logic]
v
loc_9C95BA
HOUS RB, RO 7
CHP RAa, #1 4 N
ITTT El'! Jump to fixup
HOVEQY RA, #0x5555 -y | e
MDUTEQ.W RB’ “BXES | | Jur‘r"upll': 1HUp A
BXEQ RO ; loc_855555 ¥ : |
HOU RA, #O:E555LF [| : .
BX RO : loc_ 85554E : | , | B I“_ Fixup for A
: : I [Fixup for B
' | L
: A | Fixup for C
' |
N N
| | | |
| |
| |

Original binary >

.

UEfD’UBDﬂD-CP/

cHE S

/(

Inlined function
instance

e i

UL\

Refactored
binary

=

o

=

(]

What about different register usages

» Different instances of an inlined function may use different registers and
parameters may be passed to them through different registers through
optimization

» We can clone each instance as described and then in decompilation
have the different instances be renamed to the same function

Current implementation limitations

» ARM only
» We currently don't handle jump tables

» Some corner cases still problematic ©

