
Shattering the monolith:

automatic detection of 

inlined functions

Ali Rahbar, Elias Bachaalany, Ali Pezeshk 



 Who we are

 Function inlining

 Forced inlining and reverse engineering

 Detecting inlined functions(high level)

 Detecting inlined function in binary

 Visualization

 Refactoring (Binary rewriting)

Agenda



 Ali Rahbar : Microsoft TWC 

 Elias Bachaalany: Microsoft TWC 

 Ali Pezeshk: Microsoft TWC

Who



Background



 Embedding the function body in place of a function call

 Used as an optimization by compilers

 In C and C++ users can request inlining

inline int max(int a, int b)

{

return (a > b) ? a : b;

}

 Could be forced in various compilers:

Gcc :__attribute__((always_inline))

MSVC :__forceinline

Function Inlining



 Simple control flow obfuscation

 Increases code size

 Increases complexity of analysis

 Identification of equivalent code is not trivial

Forced inlining and reverse engineering





Algorithm



 We don’t want to re-analyze a code snippet only to find 

out that we had already seen that before

 Recognizing similar code by hand can become difficult 

when looking at a large  number of inlined functions

 Complex navigation and visualization

 Dirty after decompilation

Problem



 A tool that can

Automatically detect inlined functions

Match equivalent inlined functions

Simplify visualization and interaction

Rewrite the binary to outline inlined functions

Solution



Simplifying the problem:

 Only multiple instance of an inlined function are important to

detect

 Multiple equivalent code sequence could be potentially an

inlined function

We need a way to detect multiple equivalent code sequences

How to detect inlined functions



1)Build the CFG and break the program into blocks

2)Compare all blocks to construct a list of equivalence

3)For each pair of equivalent blocks, try to construct/find

the biggest equivalent subgraphs

High level algorithm



Example

2

75

13

4

149

22

[(2,7,26),(5,13,33),(4,14,34),(9,22,42)]
1

3

6

8 10 11 12

15 16 17 18 19 20 21

subgraph1{(2,5),(2,4),(4,9)}  == subgraph2{(7,13),(7,14),(14,22)}



 Blocks are “basic block” created from the control flow

 A sequence of instruction that do not modify the control flow are in the 

same block

 Any change in the control flow, starts a new block

What are blocks



 Can’t simply compare the bytes in two blocks

 Registers change(register allocation):

Block comparison (1)



 Instructions are reordered(instruction scheduling):

Block comparison (2)



 Small variations:

Block comparison (3)



1) Digest of sequence of instruction types in the block:

An ordered representation of instruction types 

2) Digest of the set of instructions and operand types in the block:

An order agnostic combination of instruction types and operand types

(Small Prime Product)

3) Digest of frequency of instruction types and operands types 

Features



 Build a CFG

 Use digest2 to calculate block equivalence of all blocks

 Take each pair of equivalent blocks as head nodes

 Try to construct the longest equivalent subgraphs with the strictest digest

 Switch to fuzzier digest if no match is found

Algorithm

Build CFG

Build block 
equivalence

Unprocessed 
pair

Pick a pair as head 
nodes 

Find equivalent 
childs with strict 

hash

Match found

Extend equivalent 
sdubgraphs

Find equivalent 
childs with loosier 

hash

Match found

End
Save equivalent 

subgraphs



DEMO



IDA Plugin 

Details



 Python library that contains a set of algorithms

 Basic Block abstraction layer (BB_types.py)

 A set of utility functions (BB_util.py)

 An IDA support library (BB_ida.py)

BBGrouper



 GraphSlick is an IDA Pro plugin

 Analyze and visualize

 Result can be interactively modified by the user

 The algorithm is processor agnostic

GraphSlick (1)



 The UI represents the results using:

 A chooser window (aka “GS Panel”): displays the BB 

Analyze() function call results in a list

 A user graph window (aka “GS View”): 

displays a user graph containing the matching results

Allows interactivity to manipulate the grouping results

Allows coloring and navigating through the results

GraphSlick (2)



 The GS panel shows all the nodes and under which parent group they fall

 Each parent group contains various group each containing a set of nodes 

that make up similar code pattern in various program location

 “allocate and fill with random” parent group has four groups

 Each group is composed of 9 basic blocks

GraphSlick – Panel (1)



 These are the 9 nodes that make up “allocate and fill with random” code 

logic

 It is composed of 9 basic blocks

 These 9 blocks could have been an inlined function

 Or code that has been copied and pasted

GraphSlick – Panel (2)



GraphSlick – Before and after

Before After

• In this example, we 

automatically 

identified similar 

subgraphs and 

grouped them 

under a single 

parent group

• Note how the graph 

is much more 

simpler



GraphSlick – Automatic grouping on x86

In this example, we can see how the GraphSlick

panel:

• Created one parent group with 6 sub groups

• Each sub-group is composed of 11 basic 

blocks



 Here we see a function with no similar basic blocks

 Each basic block is its own parent block

 Each parent block is automatically assigned a distinct color

GraphSlick – Automatic coloring



 The “doit” function has 

the body of 

“simple_loop1” inserted 

twice

 The GS panel detected 6 

basic blocks per inlined

function call

 All the groups belonging 

to the same parent 

group have the same 

color but with different 

shade

 The other “Orphan 

nodes” are just regular 

blocks

GraphSlick – Automatic color shades



Refactoring



 Add a sufficiently large section to the binary

 Script will

 Move snippets of code for inlined function instances found to the new section

 Fix up the moved code for calls, jumps/branches, and returns

 Patch the original location to do a call in place of the inlined function instance

 Patch after the call to handle return value to stitch back the original code flow

Note that the following description is for ARM

Refactoring overview



Glance at an inlined function instance 

Exit 1

Exit 2

Exit 3

Single 
entry



Moving an inlined function instance (1)

Relative 
distance = Δ1,2

Δ1,5

Relative 
distance = Δ1,2

Δ1,5Relative 

distance 
= Δ4,𝐴

Block A is not part 
of the instance



 Gaps are preserved when creating the clone

 Relative branches/jumps that fall back into the 

instance are good to go

 Calls outside the instance are good to go as well 

(absolute address)

 Any absolute jumps/branches into the instance need 

to be patched

 Relative jumps may need to be patched as well

Fixing branches/jumps



Moving an inlined function instance (2): 

Envelope

270 byte pre-

landing pad

270 byte post-

landing pad

Fixup pad



 If jump/branch destination falls in a 

gap or the pre/post landing pads 

we just add a jump to the fix up at 

that location

 This helps handling thumb mode 2-

byte relative jumps/branches, 

since the fixup pad can be farther 

than 258 bytes away and the 

instruction size won’t allow larger 

distance specified otherwise

Relative address fixups (1)

Relative 
distance 

= Δ4,𝐴

Happens 
to fall in 
the post-
landing 

pad



 Depending on Δ6,𝐵 we need 

to patch the branch/jump 

instruction to go to the fixup

location in the fixup pad

Relative address fixups (2)

Relative distance = 
Δ6,𝐵

Happens to fall 
outisde the post-

landing pad
So here the 

branch/jump needs 
to be patched



 Fall through location is the 

instruction address right after 

end of block 7, which 

happens to fall outside the 

instance

 We put a jump to the fixup for 

C at this location (there’s 

either a gap here or we’re in 

the post-landing pad)

Fixing the fall through to outside of instance

Jump to fixup C is 
added 

immediately 
after fall through 



 The fixup block for each branch/jump to outside the instance sets a 

constructed unique return value and returns

 For instance fixup for A looks like this

MOV.W           R0, #1; return value for fixup A

MOV             PC, LR

 Then at call location we can use the return value and stich back the flow 

to the original form with a decision tree

Fixing up flow to outside of instance



 We need at least 4 bytes for the 

call, so we put restrictions on the 

size of the first block of the instance

Patching the call site



 We need another 4 bytes for the jump to 

the return value handler logic which we 

place in the fixup pad after the fixup

blocks

 Sample code for the patch

 Sample code for return value logic

Adding return value handling



Sample

Inlined function 

instance

Refactored 

binary

Original binary



 Different instances of an inlined function may use different registers and 

parameters may be passed to them through different registers through 

optimization

 We can clone each instance as described and then in decompilation

have the different instances be renamed to the same function

What about different register usages



 ARM only

 We currently don’t handle jump tables

 Some corner cases still problematic 

Current implementation limitations



Questions


