
Using IDA Pro's Debugger. © DataRescue 2005

This small tutorial introduces the main functionalities of the IDA Debugger plugin. IDA
supports debugging of x86 Windows PE files, AMD64 Windows PE files, and x86 Linux ELF files,
either locally or remotely. Let's see how the debugger can be used to locally debug a simple buggy
C console program compiled under Windows.

The buggy program.

This program simply computes averages of a set of values (1, 2, 3, 4 and 5). Those values are stored
in two arrays: one containing 8 bit values, the other containing 32-bit values.

IDA Pro Debugger Tutorial 1

#include <stdio.h>

char char_average(char array[], int count)
{
 int i;
 char average;
 average = 0;
 for (i = 0; i < count; i++)
 average += array[i];
 average /= count;
 return average;
}

int int_average(int array[], int count)
{
 int i, average;
 average = 0;
 for (i = 0; i < count; i++)
 average += array[i];
 average /= count;
 return average;
}

void main(void) {
 char chars[] = { 1, 2, 3, 4, 5 };
 int integers[] = { 1, 2, 3, 4, 5 };
 printf("chars[] - average = %d\n",
 char_average(chars, sizeof(chars)));
 printf("integers[] - average = %d\n",
 int_average(integers, sizeof(integers)));
}

Running this program gives us the following results:

Obviously, the computed average on the integer array is wrong. Let's use IDA's debugger to
understand the origin of this error !

Loading the file.

The debugger is perfectly integrated with IDA: to debug, we must first load the executable in IDA,
to create a database. The user can disassemble the file interactively, and all the information which
he will have added to the disassembly will be available during debugging. If the disassembled file is
recognized as valid (x86/ARM64 PE or x86 ELF) by the debugger, a Debugger menu automatically
appears in IDA's main window.

IDA Pro Debugger Tutorial 2

chars[] - average = 3
integers[] - average = 1054228

Instruction breakpoints.

Once we located our int_average() function in the disassembly, let's add a breakpoint just after its
prolog, by selecting the Add breakpoint command in the popup menu, or by pressing the F2 key.

IDA Pro Debugger Tutorial 3

Program execution.

Now, we can start the execution. We simply open the debugger window by using the appropriate
icon, and run the program until it reaches our breakpoint, by pressing the F9 key or clicking the
Start button in the debugger toolbar.

IDA Pro Debugger Tutorial 4

The stack.

The IDA View-ESP window now shows us the stack frame of the interesting functions. We easily
locate the array argument of our int_average() function, pointing to the integer array in the calling
function (main() function).

Now, we can start the execution. We simply open the debugger window by using the appropriate
icon, and run the program until it reaches our breakpoint, by pressing the F9 key or clicking the
Start button in the debugger toolbar.

Watches.

Why not add a watch on this array, in order to observe the evolution of its values during the process
execution ?

IDA Pro Debugger Tutorial 5

Address evaluation.

By analyzing the disassembled code, we can now locate the loop which computes the sum of the
values, and stores the result in the EBX register. The [edx+eax*4] operand clearly shows us that the
EDX register points to the start of the array, and that the EAX register is used as an index in this
array. Thus, this operand will successively point to each integer from the integers array.

Step by step and jump targets.

Let's advance step by step in the loop, by clicking on the adequate button in the debugger toolbar or
by pressing the F8 key. If necessary, IDA draws a green arrow to show us the target of a jump
instruction.

IDA Pro Debugger Tutorial 6

The bug uncovered.

Now, let's have a look at ESI's value. The EAX register (our index in the array) is compared to this
register at each iteration: so, we can conclude that the ESI register is used as a counter in the loop.
But, we also observe that ESI contains a rather strange number of elements: 14h (= 20). Remember
that our original array contains only 5 elements ! It seems we just found the source of our problem...

IDA Pro Debugger Tutorial 7

Hardware breakpoints.

To be sure, let's add a hardware breakpoint, just behind the last value of our integers array (in fact,
on the first value of the chars array). If we reach this breakpoint during the loop, it will indeed
prove that we read integers outside our array. So, we setup a hardware breakpoint with a size of 4
bytes (classical size for an integer) in Read mode.

As foreseen, if we continue the execution, the hardware breakpoint indeed detects a read access to
the first byte of the chars array. Remark that EIP points to the instruction following the one which
caused the hardware breakpoint ! It is in fact rather logical: to cause the hardware breakpoint, the
preceding instruction has been fully executed, so EIP now points to the next one.

IDA Pro Debugger Tutorial 8

Stack trace.

By looking at the disassembly, we see that the value stored in ESI comes from the count argument
of our int_average() function. Let's try to understand why the caller gives us such a strange
argument: If we open the Stack Trace window, we see a stack of all caller functions. Simply double
click on the main() function, to jump to the caller code. With the help of IDA's PIT (Parameter
Identification and Tracking) technology, we easily locate the push 20 instruction, passing an
erroneous count value to our int_average() function.

Now, by looking closer at the C source code, we understand our error: we used the sizeof() operator,
which returns the number of bytes in the array, rather than returning the number of items in this
array ! As, for the chars array, the number of bytes was equal to the number of items, we didn't
notice the error...

IDA Pro Debugger Tutorial 9

Other features.

IDA's debugger gives you access to all the segments of a debugged process's memory space,
allowing you to use all of IDA's powerful features: you can apply structures to bytes in memory,
draw graphs, create breakpoints in DLLs, ...

The way the debugger reacts to exceptions is fully configurable by the user.

This debugger is thus the essential complement to IDA itself, allowing you to interactively
disassemble and debug everything, everywhere.

IDA Pro Debugger Tutorial 10

This tutorial is © DataRescue SA/NV 2005

Revision 1.1

DataRescue SA/NV

40 Bld Piercot

4000 Liège, Belgium

T: +32-4-3446510 F: +32-4-3446514

IDA Pro Debugger Tutorial 11

http://www.datarescue.com/

	Using IDA Pro's Debugger. © DataRescue 2005

