Simple code
This is a very simple code to decompile and the output is perfect.
The only minor obstacle are references through the global offset table
but both IDA and the Decompiler handle them well.
Please note the difference in the number of lines to read on the left and on the right.
Assembler code
# void __fastcall free_argv(int argc, char **argv)
.globl _Z9free_argviPPc # weak
_Z9free_argviPPc: # CODE XREF: test_expand_argv(void)+264↑p
# test_expand_argv(void)+51C↑p ...
var_10 = -0x10
var_4 = -4
var_s0 = 0
var_s4 = 4
arg_0 = 8
arg_4 = 0xC
# __unwind {
addiu $sp, -0x28
sw $ra, 0x20+var_s4($sp)
sw $fp, 0x20+var_s0($sp)
move $fp, $sp
la $gp, _GLOBAL_OFFSET_TABLE_+0x7FF0
sw $gp, 0x20+var_10($sp)
sw $a0, 0x20+arg_0($fp)
sw $a1, 0x20+arg_4($fp)
lw $v0, 0x20+arg_4($fp)
beqz $v0, loc_17778
nop
sw $zero, 0x20+var_4($fp)
loc_1770C: # CODE XREF: free_argv(int,char **)+80↓j
lw $v1, 0x20+var_4($fp)
lw $v0, 0x20+arg_0($fp)
slt $v0, $v1, $v0
beqz $v0, loc_17760
nop
lw $v0, 0x20+var_4($fp)
sll $v0, 2
lw $v1, 0x20+arg_4($fp)
addu $v0, $v1, $v0
lw $v0, 0($v0)
move $a0, $v0
lw $v0, (qfree_ptr-0x7FF0 - _GLOBAL_OFFSET_TABLE_)($gp)
move $t9, $v0
jalr $t9 ; qfree
nop
lw $gp, 0x20+var_10($fp)
lw $v0, 0x20+var_4($fp)
addiu $v0, 1
sw $v0, 0x20+var_4($fp)
b loc_1770C
nop
# ---------------------------------------------------------------------------
loc_17760: # CODE XREF: free_argv(int,char **)+40↑j
lw $a0, 0x20+arg_4($fp)
lw $v0, (qfree_ptr-0x7FF0 - _GLOBAL_OFFSET_TABLE_)($gp)
move $t9, $v0
jalr $t9 ; qfree
nop
lw $gp, 0x20+var_10($fp)
loc_17778: # CODE XREF: free_argv(int,char **)+28↑j
nop
move $sp, $fp
lw $ra, 0x20+var_s4($sp)
lw $fp, 0x20+var_s0($sp)
addiu $sp, 0x28
jr $ra
nop
# } // starts at 176D8
Pseudocode
void __fastcall free_argv(int argc, char **argv)
{
int i; // [sp+1Ch] [+1Ch]
if ( argv )
{
for ( i = 0; i < argc; ++i )
qfree(argv[i]);
qfree(argv);
}
}
64-bit comparison
Sorry for another long assembler listing. It shows that for MIPS, as for
other platforms, the decompiler can recognize 64-bit operations and collapse
them into very readable constructs.
Assembler code
# =============== S U B R O U T I N E =======================================
# Attributes: bp-based frame fpd=0x18
# _DWORD uh_eq_s(void)
.globl _Z7uh_eq_sv
_Z7uh_eq_sv: # DATA XREF: .eh_frame:000478E4↓o
var_s0 = 0
var_s4 = 4
var_s8 = 8
var_sC = 0xC
var_s10 = 0x10
var_s14 = 0x14
var_s18 = 0x18
var_s1C = 0x1C
# __unwind {
addiu $sp, -0x38
sw $ra, 0x18+var_s1C($sp)
sw $fp, 0x18+var_s18($sp)
sw $s5, 0x18+var_s14($sp)
sw $s4, 0x18+var_s10($sp)
sw $s3, 0x18+var_sC($sp)
sw $s2, 0x18+var_s8($sp)
sw $s1, 0x18+var_s4($sp)
sw $s0, 0x18+var_s0($sp)
move $fp, $sp
jal uh
nop
move $s5, $v1
move $s4, $v0
jal s
nop
move $s3, $v0
sra $v0, 31
move $s2, $v0
xor $s0, $s4, $s2
xor $s1, $s5, $s3
or $v0, $s0, $s1
sltiu $v0, 1
andi $v0, 0xFF
move $sp, $fp
lw $ra, 0x18+var_s1C($sp)
lw $fp, 0x18+var_s18($sp)
lw $s5, 0x18+var_s14($sp)
lw $s4, 0x18+var_s10($sp)
lw $s3, 0x18+var_sC($sp)
lw $s2, 0x18+var_s8($sp)
lw $s1, 0x18+var_s4($sp)
lw $s0, 0x18+var_s0($sp)
addiu $sp, 0x38
jr $ra
nop
# } // starts at 25C
Pseudocode
bool uh_eq_s(void)
{
unsigned __int64 v0; // $v1
v0 = uh();
return v0 == s();
}
Magic divisions
We recognize magic divisions for MIPS the same way as for other processors.
Note that this listing has a non-trivial delay slot.
Assembler code
.globl smod199
smod199: # DATA XREF: .eh_frame:0000875C↓o
# __unwind {
lui $v1, 0x5254
sra $v0, $a0, 31
li $v1, 0x5254E78F
mult $a0, $v1
mfhi $v1
sra $v1, 6
subu $v1, $v0
li $v0, 0xC7
mul $a1, $v1, $v0
jr $ra
subu $v0, $a0, $a1
# } // starts at 4F2C
Pseudocode
int __fastcall smod199(int a1)
{
return a1 % 199;
}
Hard cases with delay slots
The previous example was a piece of cake. This one shows a tougher nut to crack:
there is a jump to a delay slot. A decent decompiler must handle these cases
too and produce a correct output without misleading the user. This is what we do.
(We spent quite long time inventing and testing various scenarios with delay slots).
Assembler code
branch_to_b_dslot: # CODE XREF: branch_to_bal_dslot+14↓p
# DATA XREF: branch_likely_cond_move+10↓o
move $t2, $a0
addiu $t3, $t2, -0x18
bltz $t3, l1
li $a0, 1
sllv $a0, $t3
b l2
l1: # CODE XREF: branch_to_b_dslot+8↑j
li $t4, 0xFFFFFFC0
li $t3, 0x18
subu $t3, $t2
srav $a0, $t3
l2: # CODE XREF: branch_to_b_dslot+14↑j
jr $ra
addu $v0, $a0, $t4
# End of function branch_to_b_dslot
Pseudocode
int __fastcall branch_to_b_dslot(int a1)
{
int v1; // $a0
if ( a1 - 24 < 0 )
v1 = 1 >> (24 - a1);
else
v1 = 1 << (a1 - 24);
return v1 - 64;
}
Little-endian MIPS
We support both big-endian and little-endian code. Usually they look the same
but there may be subtle differences in the assembler. The decompiler keeps
track of the bits involved and produces human-readable code.
Little endian
.globl upd_d2
upd_d2:
lwl $v0, 5($a0)
lwr $v0, 2($a0)
addiu $v0, $v0, 1
swl $v0, 5($a0)
swr $v0, 2($a0)
jr $ra
lb $v0, 0($a0)
# End of function upd_d2
Big endian
.globl upd_d2
upd_d2:
lwl $v0, 2($a0)
lwr $v0, 5($a0)
addiu $v0, $v0, 1
swl $v0, 2($a0)
swr $v0, 5($a0)
jr $ra
lb $v0, 0($a0)
# End of function upd_d2
Pseudocode
int __fastcall upd_d2(char *a1)
{
++*(_DWORD *)(a1 + 2);
return *a1;
}
MicroMIPS
MicroMIPS, as you have probably guessed, is supported too, with its
special instructions and quirks.
Assembler code
lwm16_sp:
var_10 = -0x10
addiu $sp, -0x10
swm $ra,$s0-$s2, 0x10+var_10($sp)
move $s0, $a0
move $s1, $a1
move $s2, $a2
addu $s0, $s1
addu $v0, $s0, $s2
lwm $ra,$s0-$s2, 0x10+var_10($sp)
jraddiusp 0x10
Pseudocode
__int64 __fastcall lwm16_sp(int a1, int a2, int a3)
{
return a1 + a2 + a3;
}
Floating-point operations
The MIPS processor contains a number of complex floating point instructions,
which perform several operations at once. It is not easy to decipher the meaning
of the assembler code but the pseudocode is the simplest possible.
Assembler code
x2y2m1f:
lui $v0, %hi(dbl_50)
ldc1 $f1, dbl_50
sub.d $f0, $f12, $f1
add.d $f1, $f12, $f1
mul.d $f0, $f1
jr $ra
madd.d $f0, $f13, $f0, $f12
Pseudocode
double __fastcall x2y2m1f(double a1, double a2)
{
return a2 * ((a1 - 1.0) * (a1 + 1.0)) + a1;
}
Compiler helpers
A compiler sometime uses helpers; our decompiler knows the meaning of the many
helpers and uses it to simplify code.
Assembler code
mod4:
var_C = -0xC
var_s0 = 0
lui $gp, %hi(_GLOBAL_OFFSET_TABLE_+0x7FF0)
addiu $sp, -0x20
la $gp, _GLOBAL_OFFSET_TABLE_+0x7FF0
li $a3, 5
sw $ra, 0x1C+var_s0($sp)
sw $gp, 0x1C+var_C($sp)
lw $t9, (__moddi3_ptr-0x7FF0 - _GLOBAL_OFFSET_TABLE_)($gp)
jalr $t9 ; __moddi3
move $a2, $zero
lw $ra, 0x1C+var_s0($sp)
jr $ra
addiu $sp, 0x20
Pseudocode
__int64 __fastcall mod4(__int64 a1)
{
return a1 % 5;
}