
Hex-Rays
http://www.hex-rays.com

E-mail: info@hex-rays.com Tel: +32-4-222-4300 Fax: +32-4-223-5600

Decompilation vs. Disassembly
A decompiler represents executable binary files in a readable form. More precisely, it transforms
binary code into text that software developers can read and modify. The software security industry
relies on this transformation to analyze and validate programs. The analysis is performed on the
binary code because the source code (the text form of the software) traditionally is not available,
because it is considered a commercial secret.

Programs to transform binary code into text form have always existed. Simple one-to-one mapping
of processor instruction codes into instruction mnemonics is performed by disassemblers. Many
disassemblers are available on the market, both free and commercial. The most powerful
disassembler is IDA Pro, published by Datarescue. It can handle binary code for a huge number of
processors and has open architecture that allows developers to write add-on analytic modules.

Decompilers are different from disassemblers in one very important aspect. While both generate
human readable text, decompilers generate much higher level text, which is more concise and much
easier to read.

Page 1 of 4
Copyright 2007 © Hex-Rays | info@hex-rays.com

Pic 1. Disassembler output

http://www.hex-rays.com/
mailto:info@hex-rays.com
mailto:info@hex-rays.com
mailto:info@hex-rays.com

Compared to low level assembly language, high level language representation has several
advantages:

✔ It is consise.

✔ It is structured.

✔ It doesn't require developers to know the assembly language.

✔ It recognizes and converts low level idioms into high level notions.

✔ It is less confusing and therefore easier to understand.

✔ It is less repetitive and less distracting.

✔ It uses data flow analysis.

Let's consider these points in detail.

Usually the decompiler's output is five to ten times shorter than the disassembler's output. For
example, a typical modern program contains from 400KB to 5MB of binary code. The
disassembler's output for such a program will include around 5-100MB of text, which can take
anything from several weeks to several months to analyze completely. Analysts cannot spend this
much time on a single program for economic reasons.

The decompiler's output for a typical program will be
from 400KB to 10MB. Although this is still a big
volume to read and understand (about the size of a
thick book), the time needed for analysis time is
divided by 10 or more.

The second big difference is that the decompiler
output is structured. Instead of a linear flow of
instructions where each line is similar to all the
others, the text is indented to make the program logic
explicit. Control flow constructs such as conditional
statements, loops, and switches are marked with the
appropriate keywords.

The decompiler's output is easier to understand than
the disassembler's output because it is high level. To
be able to use a disassembler, an analyst must know
the target processor's assembly language. Mainstream
programmers do not use assembly languages for
everyday tasks, but virtually everyone uses high level
languages today. Decompilers remove the gap
between the typical programming languages and the
output language. More analysts can use a decompiler
than a disassembler.

Page 2 of 4
Copyright 2007 © Hex-Rays | info@hex-rays.com

Pic 2. Decompiler output

Decompilers convert assembly level idioms into high-level abstractions. Some idioms can be quite
long and time consuming to analyze. The following one line code

x = y / 2;

can be transformed by the compiler into a series of 20-30 processor instructions. It takes at least 15-
30 seconds for an experienced analyst to recognize the pattern and mentally replace it with the
original line.. If the code includes many such idioms, an analyst is forced to take notes and mark
each pattern with its short representation. All this slows down the analysis tremendously.
Decompilers remove this burden from the analysts.

The amount of assembler instructions to analyze is huge. They look very similar to each other and
their patterns are very repetitive. Reading disassembler output is nothing like reading a captivating
story. In a compiler generated program 95% of the code will be really boring to read and analyze. It
is extremely easy for an analyst to confuse two similar looking snippets of code, and simply lose his
way in the output. These two factors (the size and the boring nature of the text) lead to the
following phenomenon: binary programs are never fully analyzed. Analysts try to locate suspicious
parts by using some heuristics and some automation tools. Exceptions happen when the program is
extremely small or an analyst devotes a disproportionally huge amount of time to the analysis.
Decompilers alleviate both problems: their output is shorter and less repetitive. The output still
contains some repetition, but it is manageable by a human being. Besides, this repetition can be
addressed by automating the analysis.

Repetitive patterns in the binary code call for a solution. One obvious solution is to employ the
computer to find patterns and somehow reduce them into something shorter and easier for human
analysts to grasp. Some disassemblers (including IDA Pro) provide a means to automate analysis.
However, the number of available analytical modules stays low, so repetitive code continues to be a
problem. The main reason is that recognizing binary patterns is a surprisingly difficult task. Any
“simple” action, including basic arithmetic operations such as addition and subtraction, can be
represented in an endless number of ways in binary form. The compiler might use the addition
operator for subtraction and vice versa. It can store constant numbers somewhere in its memory and
load them when needed. It can use the fact that, after some operations, the register value can be
proven to be a known constant, and just use the register without reinitializing it. The diversity of
methods used explains the small number of available analytical modules.

The situation is different with a decompiler. Automation becomes much easier because the
decompiler provides the analyst with high level notions. Many patterns are automatically
recognized and replaced with abstract notions. The remaining patterns can be detected easily
because of the formalisms the decompiler introduces. For example, the notions of function
parameters and calling conventions are strictly formalized. Decompilers make it extremely easy to
find the parameters of any function call, even if those parameters are initialized far away from the
call instruction. With a disassembler, this is a daunting task, which requires handling each case
individually.

Decompilers, in contrast with disassemblers, perform extensive data flow analysis on the input.
This means that questions such as, “Where is the variable initialized?” and, “Is this variable used?”
can be answered immediately, without doing any extensive search over the function. Analysts
routinely pose and answer these questions, and having the answers immediately increases their
productivity.

Page 3 of 4
Copyright 2007 © Hex-Rays | info@hex-rays.com

So if decompilers are so beneficial for binary analysis, why is no decent decompiler available? Two
reasons: 1) they are tough to build because decompilation theory is in its infancy; and 2)
decompilers have to make many assumptions about the input file, and some of these assumptions
may be wrong. Wrong assumptions lead to incorrect output. In order to be practically useful,
decompilers must have a means to remove incorrect assumptions and be interactive in general.
Building interactive applications is more difficult than building offline (batch) applications. In
short, these two obstacles make creating a decompiler a difficult endeavor both in theory and in
practice.

Given all the above, we are proud to present our analytical tool, the Hex-Rays Decompiler. It
embodies almost 10 years of proprieary research and implements many new approaches to the
problems discussed above. The highlights of our decompiler are:

✔ It can handle real world applications.
✔ It has both automatic (batch) and interactive modes.
✔ It is compiler-agnostic to the maximum possible degree.
✔ Its core does not depend on the processor.
✔ It has a type system powerful enough to express any C type.
✔ It has been tested on thousands of files including huge applications consisting of tens of

Mbs.
✔ It is interactive: analysts may change the output, rename the variables and specify their type.
✔ It is fast: it decompiles a typical function in under a second.

To learn more about Hex-Rays Decompiler please visit our website http://www.hex-rays.com

Page 4 of 4
Copyright 2007 © Hex-Rays | info@hex-rays.com

http://www.hex-rays.com/
http://www.hex-rays.com/
http://www.hex-rays.com/

	Hex-Rays

