
Krypton
Author : Karthik Selvaraj at Symantec Corporation, contact : neoxfx at gmail dot com

Krypton is an IDA Plugin that assists one in reverse engineering x86 binary executables, by executing a function from IDB (IDA

database) using IDA's powerful Appcall feature.

krypton takes xrefs from a given function (say a possible decoder) to find all function calls to it and then parses and finds the

parameters use (including prototype, no of arguments, and the arguments themselves) from instructions and uses them to execute

the function using Appcall, this is most useful in analyzing a malware binary with encryption.

Features

 lists top referenced functions list to start analysis.

 Assists in identifying encryption/decryption sub-routine.

 Decrypts the encrypted strings/contents in a binary without a need to

understand encryption method or an invasive debugging.

thus helping in overall analysis of the binary being reverse engineered.

Installation

 To Install, Copy the plugin to IDA Plugin folder,

 Std path: "C:\Program Files\IDA\plugins\"

 NOTE: plugin requires IDA >= 5.6

Quick Start Guide

 Issue Ctrl+F8

To Decrypt Strings

Say you see a function that looks like a string decryptor call, e.g.

Hit Ctrl+F8

Krypton would list the top xref'ed functions, select suspected function, right click and say "(k) run as decryptor"

NOTE: If the analyzed file is a DLL, then IMAGE_FILE_DLL flag must be cleared from the characteristics entry in the PE header prior to running krypton. That is, bit 13 must be

cleared in the characteristics WORD at offset 0x18 of the PE header. Be sure to reload the DLL in IDA prior to trying to run Krypton once the flag is cleared.

krypton decrypts it, you can right click and have it written as comment near call

result of decryption is written as comment in respective places

Detailed Usage Guide - Decryption

Once installed, krypton adds the below menus and HotKeys, to launch the Plugin use hotkey Ctrl+F8

Krypton waits for IDA Auto-Analysis to finish and then brings up a Krypton Plugin prototype view, which lists top Cross referenced

functions in IDB

Usually decryptor functions are called in multiple places thus increasing their cross reference numbers, so one might possibly find the

decryptor functions at the start of the

list and this is also a good starting point for analysis, the more one marks top referenced functions, the more clearer IDB gets.

Above figure shows top referenced functions. The 3rd column named "argument array" is a series of (argument_instruction_size,

data_size) pairs

So for below example call

 push 0x04010010 (68 10 00 01 04)

 push 3 (6A 03)

 push 0x03b09000 (68 00 90 b0 03)

 call 0x10010C8A

there are 3 arguments, whose argument array pair would be, [(5,4),(2,1),(5,4)] since the 3rd argument is a memory buffer we have

to pass allocated buffer address.

To accomplish this, Plugin allows a few "Keywords" to be specified in Argument array

To pass a allocated buffer, use “BUFFER”

- this instructs Plugin to allocate memory and pass the address as argument, and buffer size is the second value within parenthesis.

As in (‘BUFFER’, 0x400)

To pass a const value in place of an argument, use “CONST”

- this instructs Plugin to pass a constant value as a parameter, const value is the second value within parenthesis. As in (‘CONST’,

0x11).

In our example, first function sub_10010C8A has 296 references, when analyzed we can confirm that it is a decryptor. Hovering over

these functions will bring up hint that shows, 10 disassembly lines from a first cross reference of that function. This helps one to

verify and fix the argument array.

Right clicking on the Protolist view will bring a Popup Menu as shown in the below screen shot, bringing options to edit/delete/add

function prototypes.

One can add new function to the prototype list, by placing cursor in the interested function from IDA dis-assembly view and

issuing Ctrl+Y shortcut.

Once we verified/corrected that the function Prototype and Argument Array listed, we can run the function for all its cross references,

by issuing “k” key in keyboard or by right clicking and selecting menu item “(k) Run as Decryptor”

When issued, Plugin automatically sets up necessary breakpoints and runs the selected function in default debugger and returns the

result in another view as shown in the below figure.

Note: Krypton does not execute the binary like any other debugger, it only runs the selected function by setting

up necessary stack with the arguments it found at the respective reference points of the function.

When the decryption results are satisfactory one can have the results written back to IDB as comments

at their appropriate call references by issuing “w” key in keyboard or by right clicking and selecting

menu item “(w) write these to IDB” as shown below.

result of writing into IDB can be easily seen in the cross reference of the decrypt function as below.

Let see an example of a decryptor function where prototype editing can be used,

In the above figure, we can see that Plugin guessed the prototype to be sub_413C70(int, int*, int*),

and the argument array as [(5,4), (‘BUFFER’, 1024), (‘BUFFER’, 1024)].

However, when looked at the disassembly in the hint, one can see that a constant value

0x6B is passed through a local variable var_70.

So we can tell krypton to use a const value for second argument by editing the prototype listed to have argument array value [(5,4),

(‘const’, 0x6b), (‘BUFFER’, 1024)].

Now when run with the modified prototype, krypton executes correctly, decrypts and shows us result.

